Solving Problems: A Chemistry Handbook

Transcription

Solving ProblemsA Chemistry Handbook

Copyright by The McGraw-Hill Companies, Inc. All rights reserved.Permission is granted to reproduce the material contained herein on thecondition that such materials be reproduced only for classroom use; beprovided to students, teachers, and families without charge; and be usedsolely in conjunction with the Glencoe Chemistry: Matter and Changeprogram. Any other reproduction, for sale or other use, is expressly prohibited.Send all inquiries to:Glencoe/McGraw-Hill8787 Orion PlaceColumbus, OH 43240-4027ISBN: 978-0-07-878757-7MHID: 0-07-878757-2Printed in the United States of America.1 2 3 4 5 6 7 8 9 10 045 11 10 09 08 07

SOLVING PROBLEMS:A CHEMISTRY HANDBOOKTo the TeacherCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.Solving Problems: A Chemistry Handbook provides not onlypractice but guidance in how to solve problems in chemistry.This handbook covers the main concepts in Chemistry: Matterand Change. The text material is brief; the chapters focusinstead on the example problems, practice problems, and otherquestions that reinforce students’ knowledge and problemsolving skills. Answers to the problems and questions are foundat the back of the book. Solving Problems: A ChemistryHandbook is a powerful tool for independent study, reteaching,and review.Solving Problems: A Chemistry HandbookChemistry: Matter and Changeiii

SOLVING PROBLEMS:A CHEMISTRY HANDBOOKContentsChapter 1 Introduction to Chemistry . . . . . . . . . . . . . . . . . . . . . . . . 11.11.21.31.4The Stories of Two Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Chemistry and Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Scientific Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Scientific Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Chapter 2 Analyzing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.12.22.32.4Units of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Scientific Notation and Dimensional Analysis . . . . . . . . . . . . . . 11How reliable are measurements? . . . . . . . . . . . . . . . . . . . . . . . . 14Representing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.13.23.33.4Properties of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Changes in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Mixtures of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Elements and Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Chapter 4 The Structure of the Atom . . . . . . . . . . . . . . . . . . . . . . 314.14.24.34.4Early Theories of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Subatomic Particles and the Nuclear Atom . . . . . . . . . . . . . . . . 31How Atoms Differ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Unstable Nuclei and Radioactive Decay . . . . . . . . . . . . . . . . . . 39Chapter 5 Electrons in Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.15.25.3Light and Quantized Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Quantum Theory and the Atom . . . . . . . . . . . . . . . . . . . . . . . . . 43Electron Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Chapter 6 The Periodic Table and Periodic Law . . . . . . . . . . . . . . 536.16.26.3ivDevelopment of the Modern Periodic Table . . . . . . . . . . . . . . . . 53Classification of the Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 55Periodic Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Chemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.Chapter 3 Matter—Properties and Changes . . . . . . . . . . . . . . . . . 21

SOLVING PROBLEMS:A CHEMISTRY HANDBOOKChapter 7 Ionic Compounds and Metals . . . . . . . . . . . . . . . . . . . . 637.17.27.37.4Forming Chemical Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63The Formation and Nature of Ionic Bonds . . . . . . . . . . . . . . . . . 64Names and Formulas for Ionic Compounds . . . . . . . . . . . . . . . . 66Metallic Bonds and Properties of Metals . . . . . . . . . . . . . . . . . . 69Chapter 8 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718.18.28.38.48.5The Covalent Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Naming Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Molecular Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Molecular Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Electronegativity and Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Chapter 9 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819.19.29.3Reactions and Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Classifying Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . 84Reactions in Aqueous Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 87Copyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.Chapter 10 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9110.110.210.310.410.5Measuring Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Mass and the Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Moles of Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Empirical and Molecular Formulas . . . . . . . . . . . . . . . . . . . . . . 97The Formula for a Hydrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Chapter 11 Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10511.111.211.311.4What is stoichiometry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Stoichiometric Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Limiting Reactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Percent Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Chapter 12 States of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11712.112.212.312.4Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Forces of Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Liquids and Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Phase Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Solving Problems: A Chemistry HandbookChemistry: Matter and Changev

SOLVING PROBLEMS:A CHEMISTRY HANDBOOKChapter 13 Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12913.113.213.313.4The Gas Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129The Combined Gas Law and Avogadro’s Principle . . . . . . . . . 131The Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Gas Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Chapter 14 Mixtures and Solutions . . . . . . . . . . . . . . . . . . . . . . . 13914.114.214.314.4What are solutions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Solution Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Colligative Properties of Solutions . . . . . . . . . . . . . . . . . . . . . . 147Heterogeneous Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Chapter 15 Energy and Chemical Change . . . . . . . . . . . . . . . . . . 15115.215.315.415.5Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Heat in Chemical Reactions and Processes . . . . . . . . . . . . . . . 152Thermochemical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Calculating Enthalpy Change . . . . . . . . . . . . . . . . . . . . . . . . . . 155Reaction Spontaneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Chapter 16 Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16116.116.216.316.4A Model for Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Factors Affecting Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . 163Reaction Rate Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Instantaneous Reaction Rates and Reaction Mechanisms . . . . 167Chapter 17 Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 16917.117.217.3Equilibrium: A State of Dynamic Balance . . . . . . . . . . . . . . . . 169Factors Affecting Chemical Equilibrium . . . . . . . . . . . . . . . . . 173Using Equilibrium Constants . . . . . . . . . . . . . . . . . . . . . . . . . . 175Chapter 18 Acids and Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18118.118.218.318.4viAcids and Bases: An Introduction . . . . . . . . . . . . . . . . . . . . . . 181Strengths of Acids and Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 182What is pH? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184Neutralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Chemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.15.1

SOLVING PROBLEMS:A CHEMISTRY HANDBOOKChapter 19 Redox Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19319.119.219.3Oxidation and Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193Balancing Redox Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Half-Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202Chapter 20 Electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20520.120.220.3Voltaic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Types of Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Electrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Chapter 21 Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21321.121.221.321.421.5Alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213Cyclic Alkanes and Alkane Properties . . . . . . . . . . . . . . . . . . . 216Alkenes and Alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221Aromatic Hydrocarbons and Petroleum . . . . . . . . . . . . . . . . . . 222Chapter 22 Substituted Hydrocarbons and Their Reactions . . 225Copyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.22.122.222.322.422.5Functional Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Alcohols, Ethers, and Amines . . . . . . . . . . . . . . . . . . . . . . . . . . 227Carbonyl Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Other Reactions of Organic Compounds . . . . . . . . . . . . . . . . . 233Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Chapter 23 The Chemistry of Life . . . . . . . . . . . . . . . . . . . . . . . . . 23723.123.223.323.423.5Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Lipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242Chapter 24 Nuclear Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24524.124.224.324.424.5Nuclear Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246Transmutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Fission and Fusion of Atomic Nuclei . . . . . . . . . . . . . . . . . . . . 252Applications and Effects of Nuclear Reactions . . . . . . . . . . . . 253Solving Problems: A Chemistry HandbookChemistry: Matter and Changevii

SOLVING PROBLEMS:A CHEMISTRY HANDBOOKAnswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307A-1A-2A-3A-4A-5A-6A-7A-8A-9A-10A-11BB-1Data Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308SI Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309Names and Charges of Polyatomic Ions . . . . . . . . . . . . . . . . . . 310Ionization Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311Electronegativities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312Specific Heat Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313Molal Freezing and Boiling Point Constants . . . . . . . . . . . . . . 313Heat of Formation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Periodic Table of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315Solubility Product Constants . . . . . . . . . . . . . . . . . . . . . . . . . . 317Standard Reduction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 318Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320Logarithms and Antilogarithms . . . . . . . . . . . . . . . . . . . . . . . . 320Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322viiiChemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.A

CHAPTER1SOLVING PROBLEMS:A CHEMISTRY HANDBOOKIntroduction to ChemistryCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.1.1 The Stories of Two ChemicalsA chemical is any substance that has a definite composition. Ozoneis a chemical that is made up of three particles of oxygen. Ozoneforms a thick blanket above the clouds in the stratosphere. This layerof ozone protects Earth from overexposure to ultraviolet radiationfrom the Sun. You are probably familiar with the damage that exposure to ultraviolet radiation can do to your skin in the form ofsunburn. Ultraviolet radiation can also harm other animals andplants. In the 1980s, scientists documented that the ozone layeraround Earth was becoming measurably thinner in some spots.In the 1970s, scientists had observed that large quantities ofchlorofluorocarbons (CFCs) had accumulated in Earth’s atmosphere.CFCs are chemicals that contain chlorine, fluorine, and carbon.CFCs were used as coolants in refrigerators and air conditioners andas propellants in spray cans because they were considered relativelynonreactive. Some scientists hypothesized that there might be a connection between the concentration of CFCs in the atmosphere andthe thinning of the ozone layer.1.2 Chemistry and MatterChemistry is the study of matter and the changes that it undergoes.Matter is anything that has mass and takes up space. Mass is ameasurement of the amount of matter in an object. Everything, however, is not made of matter. For example, heat, light, radio waves,and magnetic fields are some things that are not made of matter.You might wonder why scientists measure matter in terms ofmass, and not in terms of weight. Your body is made of matter, andyou probably weigh yourself in pounds. However, your weight isnot just a measure of the amount of matter in your body. Yourweight also includes the effect of Earth’s gravitational pull on yourbody. This force is not the same everywhere on Earth. Scientists usemass to measure matter instead of weight because they need to compare measurements taken in different locations.Solving Problems: A Chemistry HandbookChemistry: Matter and Change1

CHAPTER1SOLVING PROBLEMS:A CHEMISTRY HANDBOOKMatter is made up of particles, called atoms, that are so smallthey cannot be seen with an ordinary light microscope. The structure, composition, and behavior of all matter can be explained byatoms and the changes they undergo.Because there are so many types of matter, there are many areasof study in the field of chemistry. Chemistry is usually divided intofive branches, as summarized in the table below.Branches of ChemistryArea of emphasisExamplesOrganicchemistrymost Inorganicchemistryin general, matter thatdoes not contain carbonminerals, metals andnonmetals, semiconductorsPhysicalchemistrythe behavior and changesof matter and the relatedenergy changesreaction rates,reaction mechanismsAnalyticalchemistrycomponents andcomposition of substancesfood nutrients,quality controlBiochemistrymatter and processesof living organismsmetabolism,fermentation1.3 Scientific MethodsA scientific method is a systematic approach used to answer a question or study a situation. It is both an organized way for scientists todo research and a way for scientists to verify the work of other scientists. A typical scientific method includes making observations,forming a hypothesis, performing an experiment, and arriving at aconclusion.Scientific study usually begins with observations. Often, a scientist will begin with qualitative data—information that describescolor, odor, shape, or some other physical characteristic that relates tothe five senses. Chemists also use quantitative data. This type ofdata is numerical. It tells how much, how little, how big, or how fast.2Chemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.Branch

CHAPTER1SOLVING PROBLEMS:A CHEMISTRY HANDBOOKCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.Practice Problems1. Identify each of the following as an example of qualitative dataor quantitative data.a. taste of an appled. length of a rodb. mass of a bricke. texture of a leafc. speed of a carf. weight of an elephantA hypothesis is a possible explanation for what has been observed.Based on the observations of ozone thinning and CFC buildup in theatmosphere, the chemists Mario Molina and F. Sherwood Rowlandhypothesized that CFCs break down in the atmosphere due to theSun’s ultraviolet rays. They further hypothesized that a chlorine particle produced by the breakdown of CFCs could break down ozone.An experiment is a set of controlled observations that test ahypothesis. In an experiment, a scientist will set up and change onevariable at a time. A variable is a quantity that can have more thanone value. The variable that is changed in an experiment is calledthe independent variable. The variable that you watch to see how itchanges as a result of your changes to the independent variable iscalled the dependent variable. For example, if you wanted to testthe effect of fertilizer on plant growth, you would change theamount of fertilizer applied to the same kinds of plants. The amountof fertilizer applied would be the independent variable in thisexperiment. Plant growth would be the dependent variable. Manyexperiments also include a control, which is a standard forcomparison; in this case, plants to which no fertilizer is applied.A conclusion is a judgment based on the data obtained in theexperiment. If data support a hypothesis, the hypothesis is tentativelyaffirmed. Hypotheses are never proven; they are always subject toadditional research. If additional data do not support a hypothesis, thehypothesis is discarded or modified. Most hypotheses are not supported by data. Whether the hypothesis is supported or not, the datacollected may still be useful. Over time, data from many experimentscan be used to form a visual, verbal, and/or mathematical explanation—called a model—of the phenomenon being studied.A theory is an explanation that has been supported by manyexperiments. Theories state broad principles of nature. Although theories are the best explanations of phenomena that scientists have atSolving Problems: A Chemistry HandbookChemistry: Matter and Change3

CHAPTER1SOLVING PROBLEMS:A CHEMISTRY HANDBOOKany given time, they are always subject to new experimental dataand are modified to include new data.A scientific law describes a relationship in nature that is supported by many experiments and for which no exception has beenfound. Scientists may use models and theories to explain why thisrelationship exists.1.4 Scientific ResearchPure research is done to gain knowledge for the sake of knowledgeitself. Molina and Rowland’s research on the behavior of CFCs—showing that in the lab CFCs could speed up the breakdown ofozone—was motivated by their curiosity and is an example of pureresearch. Applied research is undertaken to solve a specific problem. Scientists are conducting experiments to find chemicals toreplace CFCs. These experiments are examples of applied research.Safety in the Laboratory1. Study your lab assignment before you come to the lab. If youhave any questions, be sure to ask your teacher for help.2. Do not perform experiments without your teacher’s permission.Never work alone in the laboratory.3. Use the table on the inside front cover of this textbook tounderstand the safety symbols. Read all CAUTION statements.4. Safety goggles and a laboratory apron must be worn wheneveryou are in the lab. Gloves should be worn whenever you usechemicals that cause irritations or can be absorbed through theskin. Long hair must be tied back.5. Do not wear contact lenses in the lab, even under goggles.Lenses can absorb vapors and are difficult to remove in case ofan emergency.6. Avoid wearing loose, draping clothing and dangling jewelry. Barefeet and sandals are not permitted in the lab.7. Eating, drinking, and chewing gum are not allowed in the lab.8. Know where to find and how to use the fire extinguisher, safetyshower, fire blanket, and first-aid kit.4Chemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. Laboratory safety During your study of chemistry, you willconduct experiments in the laboratory. When working in the lab, youare responsible for the safety of yourself and others working aroundyou. Each time you enter the lab, use these safety rules as a guide.

CHAPTER1SOLVING PROBLEMS:A CHEMISTRY HANDBOOKSafety in the Laboratory, continued9. Report any accident, injury, incorrect procedure, or damagedequipment to your teacher.10. If chemicals come in contact with your eyes or skin, flush the areaimmediately with large quantities of water. Immediately informyour teacher of the nature of the spill.11. Handle all chemicals carefully. Check the labels of all bottlesbefore removing the contents. Read the label three times: Before you pick up the container. When the container is in your hand. When you put the bottle back.12. Do not take reagent bottles to your work area unless instructedto do so. Use test tubes, paper, or beakers to obtain yourchemicals. Take only small amounts. It is easier to get morethan to dispose of excess.13. Do not return unused chemicals to the stock bottle.14. Do not insert droppers into reagent bottles. Pour a small amountof the chemical into a beaker.15. Never taste any chemicals. Never draw any chemicals into apipette with your mouth.Copyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.16. Keep combustible materials away from open flames.17. Handle toxic and combustible gases only under the direction ofyour teacher. Use the fume hood when such materials are present.18. When heating a substance in a test tube, be careful not to pointthe mouth of the test tube at another person or yourself. Neverlook down the mouth of a test tube.19. Do not heat graduated cylinders, burettes, or pipettes with alaboratory burner.20. Use caution and proper equipment when handling hot apparatusor glassware. Hot glass looks the same as cool glass.21. Dispose of broken glass, unused chemicals, and products ofreactions only as directed by your teacher.22. Know the correct procedure for preparing acid solutions. Alwaysadd the acid slowly to the water.23. Keep the balance area clean. Never place chemicals directly on thepan of a balance.24. After completing an experiment, clean and put away yourequipment. Clean your work area. Make sure the gas and waterare turned off. Wash your hands with soap and water beforeyou leave the lab.Solving Problems: A Chemistry HandbookChemistry: Matter and Change5

1SOLVING PROBLEMS:A CHEMISTRY HANDBOOKChapter 1 Review2. How does the ozone layer protect Earth?3. Why did scientists think that the thinning of the ozone layermight be related to CFCs?4. Contrast mass and weight.5. During a chemistry lab, a student noted the following dataabout an unknown chemical she was studying: colorless,dissolves in water at room temperature, melts at 95 C, boils at800 C. Classify each piece of data as either qualitative data orquantitative data.6. Identify the dependent variable and the independent variable inthe following experiments.a. A student tests the ability of a given chemical to dissolve inwater at three different temperatures.b. A farmer compares how his crops grow with and withoutphosphorous fertilizers.c. An environmentalist tests the acidity of water samples at fivedifferent distances from a factory.7. Explain why hypotheses and theories are always tentativeexplanations.8. List two possible hypotheses about the relationship betweenozone and CFCs.9. Classify each kind of research as either pure or applied.a. A scientist studies plants in a rain forest in search ofchemicals that might be used to treat AIDS.b. A researcher studies the effects of hormones on the brain ofa worm.c. A researcher tries to develop cleaner burning fuels to helpreduce air pollution.10. State two rules you should follow when handling chemicals.11. How should you dispose of the following items in the lab:broken glass, products of chemical reactions, unusedchemicals?6Chemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.CHAPTER

CHAPTER2SOLVING PROBLEMS:A CHEMISTRY HANDBOOKAnalyzing Data2.1 Units of MeasurementYou probably know your height in feet and inches. Most peopleoutside the United States, however, measure height in meters andcentimeters. The system of standard units that includes the meter iscalled the metric system. Scientists today use a revised form of themetric system called the Système Internationale d’Unités, or SI. Base units There are seven base units in SI. A base unit is a unitof measure that is based on an object or event in the physical world.Table 2-1 lists the seven SI base units, their abbreviations, and thequantities they are used to measure.Table 2-1SI Base UnitsCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.QuantityBase unitTimesecond (s)Lengthmeter (m)Masskilogram (kg)Temperaturekelvin (K)Amount of asubstancemole (mol)Electric currentampere (A)Luminousintensitycandela (cd)SI is based on a decimal system. So are the prefixes in Table 2-2,which are used to extend the range of SI units.Solving Problems: A Chemistry HandbookChemistry: Matter and Change7

CHAPTER2SOLVING PROBLEMS:A CHEMISTRY HANDBOOKTable 2-2Prefixes Used with SI gaG1,000,000,000109gigameter (Gm)megaM1,000,000106megagram (Mg)kilok1000103kilometer (km)decid1/1010 1deciliter (dL)centic1/10010 2centimeter (cm)millim1/100010 3milligram (mg)micro 1/100000010 6microgram ( g)nanon1/100000000010 9nanometer (nm)picop1/100000000000010 12picometer (pm)Example Problem 2-1Using Prefixes with SI UnitsThe prefix pico- means 10 12, or 1/1000000000000. Thus, there are1012, or 1,000,000,000,000, picograms in one gram.Practice Problems1. How many centigrams are in a gram?2. How many liters are in a kiloliter?3. How many nanoseconds are in a second?4. How many meters are in a kilometer? Derived units Not all quantities can be measured using SI baseunits. For example, volume and density are measured using unitsthat are a combination of base units. An SI unit that is defined by acombination of base units is called a derived unit. The SI unit forvolume is the liter. A liter is a cubic meter, that is, a cube whosesides are all one meter in length. Density is a ratio that compares themass of an object to its volume. The SI units for density are oftengrams per cubic centimeter (g/cm3) or grams per milliliter (g/mL).One centimeter cubed is equivalent to one milliliter.8Chemistry: Matter and ChangeSolving Problems: A Chemistry HandbookCopyright Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.How many picograms are in a gram?

CHAPTER2SOLVING PROBLEMS:A CHEMISTRY HANDBOOKExample Problem 2-2Calculating DensityA 1.1-g ice cube raises the level of water

Solving Problems: A Chemistry Handbook Chemistry: Matter and Change3 SOLVING PROBLEMS: CHAPTER 1 A CHEMISTRY HANDBOOK Practice Problems 1. Identify each of the following as an example of qualitative data or quantitative data. a. taste of an apple d. length of a rod b. mass of a brick e. tex