HOLT - Physics Is Beautiful

Transcription

HOLTPhysicsSolutions Manual

Holt PhysicsTeacher’s Solutions ManualCopyright by Holt, Rinehart and WinstonAll rights reserved. No part of this publication may be reproduced or transmittedin any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without permission inwriting from the publisher.Teachers using HOLT PHYSICS may photocopy complete pages in sufficientquantities for classroom use only and not for resale.HOLT and the “Owl Design” are trademarks licensed to Holt, Rinehart andWinston, registered in the United States of America and/or other jurisdictions.Printed in the United States of AmericaIf you have received these materials as examination copies free of charge, Holt,Rinehart and Winston retains title to the materials and they may not be resold.Resale of examination copies is strictly prohibited.Possession of this publication in print format does not entitle users to convertthis publication, or any portion of it, into electronic format.ISBN-13: 978-0-03-099807-2ISBN-10: 0-03-099807-71 2 3 4 5 6 7 082 11 10 09 08 07

ContentsSection I Student Edition SolutionsChapter 1The Science of PhysicsChapter 2Motion in One DimensionChapter 3Two-Dimensional Motion and VectorsChapter 4Forces and the Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-4-1Chapter 5Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-5-1Chapter 6Momentum and Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-6-1Chapter 7Circular Motion and Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-7-1Chapter 8Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-8-1Chapter 9Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-9-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-3-1Chapter 10 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-10-1Copyright by Holt, Rinehart and Winston. All rights reserved.Chapter 11 Vibrations and Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-11-1Chapter 12 Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-12-1Chapter 13 Light and Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-13-1Chapter 14 Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-14-1Chapter 15 Interference and Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-15-1Chapter 16 Electric Forces and Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-16-1Chapter 17 Electrical Energy and Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-17-1Chapter 18 Circuits and Circuit Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-18-1Chapter 19 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-19-1Chapter 20 Electromagnetic Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-20-1Contentsiii

Chapter 21 Atomic Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-21-1Chapter 22 Subatomic Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-22-1Appendix I Additional Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-Apx I-1Section II Problem Workbook SolutionsChapter 1The Science of PhysicsChapter 2Motion in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-2-1Chapter 3Two-Dimensional Motion and VectorsChapter 4Forces and the Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-4-1Chapter 5Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-5-1Chapter 6Momentum and Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-6-1Chapter 7Circular Motion and Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-7-1Chapter 8Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-8-1Chapter 9Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-9-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-1-1Chapter 10 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-10-1Chapter 11 Vibrations and Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-11-1Chapter 12 Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-12-1Chapter 13 Light and Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-13-1Chapter 14 Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-14-1Chapter 15 Interference and Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-15-1Chapter 16 Electric Forces and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-16-1Chapter 17 Electrical Energy and Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-17-1ivContentsCopyright by Holt, Rinehart and Winston. All rights reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . II-3-1

Chapter 18 Circuits and Circuit Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-18-1Chapter 19 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-19-1Chapter 20 Electromagnetic Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-20-1Chapter 21 Atomic Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-21-1Chapter 22 Subatomic Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-22-1III-1Copyright by Holt, Rinehart and Winston. All rights reserved.Section III Study Guide Worksheets AnswersContentsv

SectionStudent EditionSolutionsIIHolt Physicssolutions

Student Edition SolutionsThe Science of PhysicsThe Science of Physics, Practice AGivensISolutions1. diameter 50 µm1 10 6 m50 µm 5 10 5 m1 µm2. period 1 µs1 10 6 s1 µs 1 10 6 s1 µs3. diameter 10 nm1 10 9 ma. 10 nm 1 10 8 m1 nm1 mmb. 1 10 8 m 1 10 5 mm1 10 3 m1 µmc. 1 10 8 m 1 10 2 µm1 10 6 m4. distance 1.5 1011 m1 Tm1.5 1011 m 1.5 10-1 Tm1 1012 m1 km1.5 1011 m 1.5 108 km1 103 mCopyright by Holt, Rinehart and Winston. All rights reserved.5. mass 1.440 106 g1 kg1.440 106 g 1.440 103 kg1 103 gThe Science of Physics, Section 2 Review2. mass 6.20 mg3.1 kg1 10 3 ga. 6.20 mg 6.20 10 6 kg1 103 g1 mgtime 3 10 9 s1 msb. 3 10 9 s 3 10 6 ms1 10 3 sdistance 88.0 km1 103 mc. 88.0 km 8.80 104 m1 kma. 26 0.02584 0.67184 0.67b. 15.3 1.1 13.90909091 14c. 782.45 3.5328 778.9172 778.92d. 63.258 734.2 797.458 797.5Section One—Student Edition SolutionsI Ch. 1–1

The Science of Physics, Chapter ReviewIGivensSolutions11. 2 dm1 10–1 m1 mma. 2 dm 2 102 mm1 dm1 10 3 m2 h 10 min60 minb. 2 h 120 min1h120 min 10 min 130 min60 s130 min 7.8 103 s1 min16 g1 µgc. 16 g 1.6 107 µg1 10 6 g0.75 km1 cm1 103 md. 0.75 km 7.5 104 cm1 10 2 m1 km0.675 mg1 10 3 ge. 0.675 mg 6.75 10 4 g1 mg462 µm1 cm1 10 6 m 4.62 10 2 cmf. 462 µm 1 10 2 m1 µm35 km/h1h35 km1 103 mg. 9.7 m/s3600 sh1 km1 dekaration 1 dekarationa. 10 rations 101 rations2000 mockingbirds1 kmockingbirdsb. 2000 mockingbirds 2 kilomockingbirds1 103 mockingbirds10 6 phones1 µphone 1 microphonec. 10 6 phones 10 6 phones10 9 goats1 ngoat 1 nanogoatd. 10 9 goats 10 9 goats1018 miners1 Eminer 1 examinere. 1018 miners 1018 miners13. speed of light 3.00 108 m/s3.00 108 m 3600 s1 km 1 h 1.08 109 kms1h1 103 m t 1 h14. 1 ton 1.000 103 kgmass/person 85 kgI Ch. 1–21 person1.000 103 kg 11 people85 kgNote that the numerical answer, 11.8 people, must be rounded down to 11 people.Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved.12. 10 rations

GivensSolutions20.a. 756 g 37.2 g 0.83 g 2.5 g 796.53 g 797 g3.2 mb. 0.898119562 m/s 0.90 m/s3.563 sc. 5.67 mm p 17.81283035 mm 17.8 mmId. 27.54 s 3.8 s 23.74 s 23.7 s21. 93.46 cm, 135.3 cm22.l 38.44 mw 19.5 m26. s (a b c) 293.46 cm 135.3 cm 228.76 cm 228.8 cm38.44 m 38.44 m 19.5 m 19.5 m 115.88 m 115.9 mr (s a)(s b)(s c) sr, a, b, c, and s all have units of L.length length length length length (length)3 (l)2 length en gt h length Thus, the equation is dimensionally consistent.27.T 2p a LgSubstitute the proper dimensions into the equation.time length (t im e) 2 time2[length/(time) ] Thus, the dimensions are consistent.Copyright by Holt, Rinehart and Winston. All rights reserved.28.(m/s)2 m/s2 sm2/s2 m/sThe dimensions are not consistent.29.Estimate one breath every 5 s.365 days 24 h 3600 s 1 breath70 years 4 108 breaths1 year1 day1h5s30.Estimate one heart beat per second.24 h 3600 s 1 beat1 day 9 104 beats1 day1hs31.Ages will vary.365 days 24 h 3600 s17 years 5.4 108 s1 year1 day1h32.Estimate a tire’s radius to be 0.3 m.1.609 km 103 m1 rev50 000 mi 4 107 rev1 mi1 km 2 p (0.3 m)Section One—Student Edition SolutionsI Ch. 1–3

GivensSolutions33.Estimate 30 balls lost per game.30 balls81 games 2 103 balls1 gameI1Estimate 4 lb per burger and 800 lb per head of cattle.34.0.25 lb5 1010 burgers 1 1010 lb1 burger0.25 lb1 head5 1010 burgers 2 107 head of cattle1 burger 800 lb35. population 8 million peopleEstimate 5 people per family.8 million people 2 million families5 people per familyEstimate that 1/5 of families have a piano.1Number of pianos (2 million families) 400,000 pianos5Estimate 3 tunings per day per tuner, with 200 work days per year. Number of pianos tuned each year (per tuner) (3)(200) 600400,000 pianosNumber of tuners 7 102 tuners600 pianos/year per tuner36. diameter 3.8 cml 4 m w 4 m h 3mFind the number of balls that can fit along the length and width.1 ball4 m 100 balls0.038 mFind the number that can be stacked to the ceiling.1 ball3 m 80 balls0.038 m100 balls 100 balls 80 balls 8 105 ballsA rough estimate: divide the volume of the room by the volume of a ball.37. r 3.5 cma. C 2pr 2p (3.5 cm) 22 cmA pr 2 p (3.5 cm)2 38 cm2r 4.65 cmb. C 2pr 2p (4.65 cm) 29.2 cmA pr 2 p (4.65 cm)2 67.9 cm238.1s1h1 day1 year5 109 bills 272 years1 bill 3600 s 14 h 365 daysTake the 5000. It would take 272 years to count 5 billion 1 bills.I Ch. 1–4Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved.Multiply all three figures to find the number of balls that can fit in the room.

GivensSolutions39.3.786 10 3 m3V 1 quart 9.465 10 4 m34 quartsV L3 L 3 V 40. mass 9.00 10 7 kgdensity 918 kg/m3r 41.8 cmarea pr 241. 1 cubit 0.50 mVark 300 cubits 50 cubits 30 cubits 39.46510 4 m3 9.818 10 2 m Imass9.00 10 7 kgvolume 9.80 10 10 m3density918 kg/m3volume 9.80 10 10 m3diameter 1.79 10 9 mareap (0.418 m)2 0.50 mVark (300 cubits)(50 cubits)(30 cubits) cubit3Vark 6 104 m3Estimate the average size of a house to be 2000 ft2 and 10 ft tall. 1mVhouse (2000 ft2)(10 ft) 3.281 ft3Vhouse 6 102 m3V rk 6 104 m3 a 100Vhouse 6 102 m342. d 1.0 10 6 ml 1.0 mnumber of micrometeorites per side:1 micrometeorite 1.0 106 micrometeorites1.0 m 1.0 10 6 mnumber of micrometeorites needed to cover the moon to a depth of 1.0 m:Copyright by Holt, Rinehart and Winston. All rights reserved.(1.0 106 micrometeorites)3 1.0 1018 micrometeorites1s1h1 year1 day1.0 1018 micrometeorites 1 micrometeorite 3600 s 24 h 365 days3.2 1010 yearsNote that a rougher estimate can be made by dividing the volume of the 1.0 m3 boxby the volume of a micrometeorite.43. V 1.0 cm3m 1.0 10 3 kg1 cm 31.0 10 3 kg 1.0 m3 1.0 103 kg3(1 10 2 m)31.0 cmSection One—Student Edition SolutionsI Ch. 1–5

GivensSolutions44. density r 1.0 103 kg/m3diameter 1.0 µma.44 1.0 10 6 mV pr 3 p 5.2 10 19 m3332 3 m rV (1.0 103 kg/m3)(5.2 10 19 m3)(0.9) 5 10 16 kgIl 4.0 mmdiameter 2r 2.0 mmb. 2 m rV (1.0 103 kg/m3)(1.3 10 8 m3)(0.9) 1 10 5 kgdensity r 1.0 103 kg/m345. r 6.03 107 m2.0 10 3 mV l pr 2 (4.0 10 3m) (p) 1.3 10 8 m32a.4V pr33m3mdensity 3V 4p r(3)(5.68 1026 kg) 103 g 1 m density 4p (6.03 107 m)3 kg 102 cmm 5.68 1026 kg 3density 0.618 g/cm3b.surface area 4pr 2 4p(6.03 107 m)2surface area 4.57 1016 m2The Science of Physics, Standardized Test Prep103 m9.5 1012 km 9.5 1015 m1 kmCopyright by Holt, Rinehart and Winston. All rights reserved.5. 1 ly 9 500 000 000 000 km 9.5 1012 kmI Ch. 1–6Holt Physics Solution Manual

Student Edition SolutionsMotion InOne DimensionMotion In One Dimension, Practice AGivens1. vavg 0.98 m/s east t 34 min2. t 15 minvavg 12.5 km/h south3. t 9.5 minvavg 1.2 m/s north4. vavg 48.0 km/h east x 144 km east5. vavg 56.0 km/h east x 144 km east6. x1 280 km southvavg,1 88 km/h southCopyright by Holt, Rinehart and Winston. All rights reserved. t2 24 minvavg,2 0 km/h x3 210 km southvavg,3 75 km/h southISolutions x vavg t (0.98 m/s)(34 min)(60 s/min) x 2.0 103 m 2.0 km east 1h x vavg t (12.5 km/h)(15 min) 60 min x 3.1 km x vavg t (1.2 m/s) (9.5 min)(60 s/min) x 680 m north144 km x t 3.00 hvavg 48.0 km/h144 km x t 2.57 hvavg 56.0 km/htime saved 3.00 h 2.57 h 0.43 h 25.8 min x1 x3a. ttot t1 t2 t3 t2 vavg,1vavg,3 280 km1h210 km ttot (24 min) 88 km/h60 min75 km/h ttot 3.2 h 0.40 h 2.8 h 6.4 h 6 h 24 min xtot x1 x2 x3b. vavg, tot ttot t1 t2 t3 1h x2 vavg,2 t2 (0 km/h)(24 min) 0 km60 min280 km 0 km 210 km 490 kmvavg, tot 77 km/h south6.4 h6.4 hMotion In One Dimension, Section 1 Review1. v 3.5 mm/s x 8.4 cm x8.4 cm t 24 sv0.35 cm/s2. v 1.5 m/s x 9.3 m9.3 m x t 6.2 s1.5 m/svSection One—Student Edition SolutionsI Ch. 2–1

GivensSolutions3. x1 50.0 m south t1 20.0 s x2 50.0 m northI t2 22.0 s x50.0 ma. vavg,1 1 2.50 m/s south t120.0 s x50.0 mb. vavg,2 2 2.27 m/s north t222.0 s xtot x1 x2 ( 50.0 m) (50.0 m) 0.0 m ttot t1 t2 20.0 s 22.0 s 42.0 s xtot 0.0 mvavg 0.0 m/s ttot 42.0 s4. v1 0.90 m/sv2 1.90 m/s x 780 m780 m xa. t1 870 sv1 0.90 m/s780 m x t2 410 sv2 1.90 m/s t1 t2 870 s 410 s 460 s t1 t2 (5.50 min)(60 s/min) 3.30 102 sb. x1 v1 t1 x2 v2 t2 x1 x2v1 t1 v2 t2v1[ t2 (3.30 102 s)] v2 t2v1 t2 v1(3.30 102 s) v2 t2 t2 (v1 v2) v1(3.30 102 s)2 (0.90 m/s)(3.30 102 s) v1(3.30 102 s) (0.90 m/s)(3.30 10 s) t2 0.90 m/s 1.90 m/s 1.00 m/sv1 v2 t2 3.0 102 s t1 t2 (3.30 102 s) (3.0 102 s) (3.30 102 s) 630 s x2 v2 t2 (1.90 m/s)(3.0 102 s) 570 mMotion In One Dimension, Practice B1. aavg 4.1 m/s2vi 9.0 m/svf – vi v– 9.0 m/s0.0 m/s – 9.0 m/s t 2 2.2 saavgaavg– 4.1 m/s– 4.1 m/s2vf 0.0 m/s2. aavg 2.5 m/s2vi 7.0 m/s v vf – vi5.0 m/s12.0 m/s – 7.0 m/s t 2 2.0 saavgaavg2.5 m/s2.5 m/s2vf 12.0 m/s3. aavg 1.2 m/s2vi 6.5 m/svf vi 6.5 m/s0.0 m/s 6.5 m/s t 2 5.4 saavg 1.2 m/s 1.2 m/s2vf 0.0 m/sI Ch. 2–2Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved. x1 v1 t1 (0.90 m/s)(630 s) 570 m

Givens4. vi 1.2 m/svf 6.5 m/sSolutionsvf vi 6.5 m/s ( 1.2 m/s) 5.3 m/saavg 3.5 10 3 m/s2(25 min)(60 s/min)1500 s t t 25 min5. aavg 4.7 10 3 m/s2 t 5.0 minIa. v aavg t (4.7 10 3 m/s2)(5.0 min)(60 s/min) 1.4 m/sb. vf v vi 1.4 m/s 1.7 m/s 3.1 m/svi 1.7 m/sMotion In One Dimension, Practice C1. vi 0.0 m/svf 6.6 m/s1111 x 2 (vi vf ) t 2 (0.0 m/s 6.6 m/s)(6.5 s) 21 m t 6.5 s2. vi 15.0 m/s x 2 (vi vf ) t 2 (15.0 m/s 0.0 m/s)(2.50 s) 18.8 mvf 0.0 m/s t 2.50 s3. vi 21.8 m/s x 99 m2 x(2)(99 m) t 9.1 svi vf 21.8 m/s 0.0 m/svf 0.0 m/s4. vi 6.4 m/s x 3.2 km(2)(3.2 103 m)2 xvf vi 6.4 m/s 3.0 101 m/s 6.4 m/s 24 m/s(3.5 min)(60 s/min) tCopyright by Holt, Rinehart and Winston. All rights reserved. t 3.5 minMotion In One Dimension, Practice D1. vi 6.5 m/svf vi a t 6.5 m/s (0.92 m/s2)(3.6 s)a 0.92 m/s2vf 6.5 m/s 3.3 m/s 9.8 m/s t 3.6 s x vi t 2 a t 211 x (6.5 m/s)(3.6 s) 2 (0.92 m/s2)(3.6 s)2 x 23 m 6.0 m 29 m2. vi 4.30 m/sa 3.00 m/s2 t 5.00 svf vi a t 4.30 m/s (3.00 m/s2)(5.00 s)vf 4.30 m/s 15.0 m/s 19.3 m/s1 x vi t 2 a t 21 x (4.30 m/s)(5.00 s) 2 (3.00 m/s2)(5.00 s)2 x 21.5 m 37.5 m 59.0 mSection One—Student Edition SolutionsI Ch. 2–3

GivensSolutions3. vi 0.0 m/sIvf vi a t 0 m/s ( 1.5 m/s2)(5.0 s) 7.5 m/s11 t 5.0 s x vi t 2 a t 2 (0 m/s)(5.0 s) 2 ( 1.5 m/s2)(5.0 s)2 19 ma 1.5 m/s2distance traveled 19 m4. vi 15.0 m/sa 2.0 m/s2vf 10.0 m/svf vi 10.0 m/s 15.0 m/s 5.0 t s 2.5 sa 2.0 m/s2 2.01 x vi t 2 a t 21 x (15.0 m/s)(2.5 s) 2 ( 2.0 m/s2)(2.5 s)2 x 38 m ( 6.2 m) 32 mdistance traveled during braking 32 mMotion In One Dimension, Practice E1. vi 0 m/sa 0.500 m/s2 x 6.32 m2. vi 7.0 m/sa 0.80 m/s2 x 245 m 2vf v i 2a x vf (0m/s )2 (2)(0.500m/s2)(6.32m) 6.32m2 /s2 2.51 m/s vf 2.51 m/s a. vf vi2 2a x vf (7.0m /s)2 (2)(0.80m/s2)(245m) vf 49m2/ s2 390 m2/s2 44 0 m 2 /s 2 21 m/svf 21 m/s x 125 m b. vf (7m/sm) .0 ) 2 (2) (0 .8 0 m /s 2 )(1 25 vf 49m2 / s2 (2.02 m2 / s2) 25s2 0 1 0 m 2 / x 67 m c. vf (7m/s)2 (2)m2/ s2 110 m2/s2 .0 (0 .8 0 m /s 2 )(6 7 m ) 49 vf 16s2 13 m/s 13 m/s 0 m 2 / 3. vi 0 m/sa 2.3 m/s2 x 55 m a. vf v i 2 m/s)2 (2)m/s 2a x (0 (2 .3 2 )(5 5 m ) vf 25 0 m 2 /s 2 16 m/scar speed 16 m/svf16 m/sb. t 2 7.0 sa 2.3 m/s4. vi 6.5 m/svf 1.5 m/svf 2 vi2 (1.5 m/s)2 (6.5 m/s)2 40 m2/s2 7.4 m x 5.4 m/s2(2)( 2.7 m/s2)2aa 2.7 m/s2I Ch. 2–4Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved.vf 16 m/s 16 m/s

GivensSolutionsvf 2 vi2 (33 m/s)2 (0.0 m/s)22a 2.3 m/s(2)(240 m)2 x5. vi 0.0 m/svf 33 m/s x 240 m6. a 0.85 m/s2vi 83 km/hvf 94 km/hvi (83 km/h)(103 m/km)(1 h/3600 s) 23 m/sIvf (94 km/h)(103 m/km)(1 h/3600 s) 26 msvf 2 vi2 (26 m/s)2 (23 m/s)2 x (2)(0.85 m/s2)2a680 m2/s2 530 m2/s2 x (2)(0.85 m/s2)150 m2/s2 x 88 m(2)(0.85 m/s2)distance traveled 88 mMotion In One Dimension, Section 2 Review1. a 2.60 m/s2vi 24.6 m/svf 26.8 m/s2.2 m/s t 2 0.85 s2.60 m/svf 12.5 m/svf vi 12.5 m/s 0 m/sa. a 5.0 m/s2 t2.5 s t 2.5 sb. x vi t 2 a t 2 (0 m/s)(2.5 s) 2 (5.0 m/s2)(2.5 s)2 16 m3. vi 0 m/sCopyright by Holt, Rinehart and Winston. All rights reserved.vf vi 26.8 m/s 24.6 m/s t a2.60 m/s211 x 16 mc. vavg 6.4 m/s t 2.5 sMotion In One Dimension, Practice F1. y 239 m a. vf v i 2 m/s)2 (2) 2a y (0 ( 3. 7 m /s 2 )( 23 9 m ) vi 0 m/s2a 3.7 m/s3 2 2 10 m / s 42 m/svf 1.8 vf 42 m/svf v 42 m/s 0 m/sb. t i 11 sa 3.7 m/s22. y 25.0 mvi 0 m/sa 9.81 m/s2 a. vf v i 2 m/s)2 (2)m/sm) 2a y (0 ( 9. 81 2 )( 25 .0 vf 4 .902 m2 / s2 22.1 m/s 0 1 vf vi 22.1 m/s 0 m/s 2.25 sb. t a 9.81 m/s2Section One—Student Edition SolutionsI Ch. 2–5

GivensSolutions3. vi 8.0 m/sa 9.81 m/s2 2a. vf v m/s)2 (2)m/sm) (8 .0 ( 9. 81 2 )(0 i 2a y vf 64m2/ s2 8.0 m/s 8.0 m/s vf vi 8.0 m/s 8.0 m/s 16.0 m/sb. t 2 1.63 sa 9.81 m/s 9.81 m/s2 y 0 mI4. vi 6.0 m/svf 1.1 m/s2a 9.81 m/s2vf 2 vi 2(1.1 m/s)2 (6.0 m/s)2 y (2)( 9.81 m/s2)2a1.2 m2/s2 36 m2/s2 35 m2/s2 1.8 m y 19.6 m/s2 19.6 m/s2Motion In One Dimension, Section 3 Review2. vi 0 m/s t 1.5 sa 9.81 m/s211 y vi t 2 a t 2 (0 m/s)(1.5 s) 2 ( 9.81 m/s2)(1.5 s)2 y 0 m ( 11 m) 11 mthe distance to the water’s surface 11 mMotion In One Dimension, Chapter Review7. t 0.530 h x vavg t (19.0 km/h)(0.530 h) 10.1 km eastvavg 19.0 km/h east8. t 2.00 h, 9.00 min, 21.0 svavg 5.436 m/s x vavg t (5.436 m/s) [(2.00 h)(3600 s/h) (9.00 min)(60 s/min) 21.0 s] x (5.436 m/s)(7200 s 540 s 21.0 s) (5.436 m/s)(7760 s) x 4.22 104 m 4.22 101 kma. xA 70.0 mdistance betweenb. xB 70.0 m 70.0 m 140.0 mpoles 70.0 m xA 70.0 mc. vavg,A 14 m/s t5.0 s x140 md. vavg,B B 28 m/s t5.0 sI Ch. 2–6Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved.9. t 5.00 s

GivensSolutions10. v1 80.0 km/ha. x1 v1 t1 (80.0 km/h)(30.0 min)(1 h/60 min) 40.0 km t1 30.0 min x2 v2 t2 (105 km/h)(12.0 min)(1 h/60 min) 21.0 kmv2 105 km/h x3 v3 t3 (40.0 km/h)(45.0 min)(1 h/60 min) 30.0 km t2 12.0 min x4 v4 t4 (0 km/h)(15.0 min)(1 h/60 min) 0 kmv3 40.0 km/h xtot x1 x2 x3 x4 vavg ttot t1 t2 t3 t4 t3 45.0 minv4 0 km/h t4 15.0 minI40.0 km 21.0 km 30.0 km 0 kmvavg (30.0 min 12.0 min 45.0 min 15.0 min)(1 h/60 min)91.0 kmvavg 53.5 km/h(102.0 min)(1 h/60 min)b. xtot x1 x2 x3 x4 xtot 40.0 km 21.0 km 30.0 km 0 km 91.0 km11. vA 9.0 km/h east 9.0 km/h xA vA t x xi, A xB vB t x xi, Bxi, A 6.0 km west offlagpole 6.0 km xA xB (x xi, A) (x xi, B) xi, B xi, AvB 8.0 km/h west11.0 km5.0 km ( 6.0 km)xi, B xi, A t 9.0 km/h ( 8.0 km/h)17.0 km/hvA vB 8.0 km/hxi, B 5.0 km east offlagpole 5.0 kmx distance from flagpoleto point where runners’paths cross xA xB vA t vB t (vA vB) t t 0.647 h xA vA t (9.0 km/h)(0.647 h) 5.8 km xB vB t ( 8.0 km/h)(0.647 h) 5.2 kmfor runner A, x xA xi, A 5.8 km ( 6.0 km) 0.2 kmx 0.2 km west of the flagpolefor runner B, x xB xi, B 5.2 km (5.0 km) 0.2 kmCopyright by Holt, Rinehart and Winston. All rights reserved.x 0.2 km west of the flagpoleSection One—Student Edition SolutionsI Ch. 2–7

GivensSolutions16. vi 5.0 m/s v vf v8.0 m/s 5.0 m/s3.0 m/s t i 2aav gaavg0.75 m/s20.75 m/saavg 0.75 m/s2vf 8.0 m/s t 4.0 sI17. For 0 s to 5.0 s:vi 6.8 m/svf 6.8 m/sFor 0 s to 5.0 s,vf vi 6.8 m/s ( 6.8 m/s)aavg 0.0 m/s2 t5.0 s t 5.0 sFor 5.0 s to 15.0 s:vi 6.8 m/svf 6.8 m/sFor 5.0 s to 15.0 s,vf vi 6.8 m/s ( 6.8 m/s) 13.6 m/saavg 1.36 m/s2 t10.0 s10.0 s t 10.0 sFor 0 s to 20.0 s:vi 6.8 m/svf 6.8 m/sFor 0 s to 20.0 s,vf vi 6.8 m/s ( 6.8 m/s) 13.6 m/saavg 0.680 m/s2 t20.0 s20.0 s t 20.0 s18. vi 75.0 km/h 21.0 m/svf 0 km/h 0 m/s t 21 s11 x 220 m119. vi 0 m/s1 x 2 (vi vf) t 2 (21.0 m/s 0 m/s)(21.0 s) 2 (21.0 m/s)(21 s)1 x 2 (vi vf) t 2 (0 m/s 18 m/s)(12 s) 110 mvf 18 m/svf vi a t 7.0 m/s (0.80 m/s2)(2.0 s) 7.0 m/s 1.6 m/s 8.6 m/s20. vi 7.0 m/sa 0.80 m/s2 t 2.0 sa. vf vi a t 0 m/s ( 3.00 m/s2)(5.0 s) 15 m/s21. vi 0 m/sa 3.00 m/s 2 t 5.0 s22. vi 0 m/s11b. x vi t 2 a t 2 (0 m/s)(5.0 s) 2 ( 3.00 m/s2)(5.0 s)2 38 mFor the first time interval, t 1 5.0 svf vi a1 t1 0 m/s (1.5 m/s2)(5.0 s) 7.5 m/sa1 1.5 m/s2 x 1 vi t1 2 a1 t12 (0 m/s)(5.0 s) 2 (1.5 m/s2)(5.0 s)2 19 m t 2 3.0 sFor the second time interval,2a2 2.0 m/s11vi 7.5 m/svf vi a2 t2 7.5 m/s ( 2.0 m/s2)(3.0 s) 7.5 m/s 6.0 m/s 1.5 m/s11 x 2 vi t2 2 a2 t2 (7.5 m/s)(3.0 s) 2 ( 2.0 m/s2)(3.0 s)2 22 m 9.0 m 13 m x tot x1 x2 19 m 13 m 32 mI Ch. 2–8Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved. t 12 s

GivensSolutions23. a 1.40 m/s2vf 2 vi2 (7.00 m/s)2 (0 m/s)2 49.0 m2/s2 x 17.5 m2a2.80 m/s2(2)(1.40 m/s2)vi 0 m/svf 7.00 m/s 24. vi 0 m/s a. vf v i2 m/sm) 12 2a x (0 ) 2 (2) (0 .2 1 m /s 2 )(2 80 0 m 2 /s 2 11 m/sa 0.21 m/s2Ivf 11 m/s x 280 mvf v11 m/s 0 m/sb. t i 52 sa0.21 m/s225. vi 1.20 m/sa 0.31 m/s2 x 0.75 m30. vi 0 m/s vf vi2 )2 (2)m/s 2a x (1 .2 0 m /s ( 0. 31 2 )(0 .7 5 m ) vf 1.m2 / s2 0.4s2 0.98m2 /s2 0.99 m/s 0.99 m/s 44 6 m 2 / When vi 0 m/s, y 80.0 m2a 9.81 m/s v 2 2a yv 2a y v (2m/sm ) )( 9. 81 2 )( 80 .0 2 2v 15m /s 70 v 39.6 m/s31. vi 0 m/sWhen vi 0 m/s,2a 9.81 m/s y 76.0 m32. vi, 1 25 m/sCopyright by Holt, Rinehart and Winston. All rights reserved.vi, 2 0 m/s t )( 76.0 m) 3.94 s 2 a y (2 9.81 m/s21 y1 y yi, 1 vi, 1 t 2 a t 212a 9.81 m/syi, 1 0 m y2 y yi, 2 vi, 2 t 2 a t 2 y1 y2 (y yi, 1) (y yi, 2) yi, 2 yi, 111 y1 y2 (vi, 1 t 2 a t 2) (vi, 2 t 2 a t 2) (vi, 1 vi, 2) tyi, 2 15 m y1 y2 yi, 2 yi, 1 (vi, 1 vi, 2) ty distance from groundto point where both ballsare at the same heightyi, 2 yi, 115 m 0 m15 m 0.60 s t vi, 1 vi, 2 25 m/s 0 m/s 25 m/s33. vavg 27 800 km/hrearth 6380 km x 320.0 kmcircumference 2p(rearth x)circumference 2p (6380 km 320.0 km)2p(6.70 103 km) t 1.51 hvavg27 800 km/h27 800 km/hSection One—Student Edition SolutionsI Ch. 2–9

GivensSolutions34.a. For Δy 0.20 m maximum height of ball, Δt 0.20 sb. For Δy 0.10 m one-half maximum height of ball,Δt 0.06 s as ball goes upIΔt 0.34 s as ball comes downc. Estimating v from t 0.04 s to t 0.06 s:Δx 0.10 m 0.07 m 0.03 mv 2 m/sΔt0.06 s 0.04 s0.02 sEstimating v from t 0.09 s to t 0.11 s:Δx 0.15 m 0.13 m 0.02 mv 1 m/sΔt0.11 s 0.09 s0.02 sEstimating v from t 0.14 s to t 0.16 s:Δx 0.19 m 0.18 m 0.01 mv 0.5 m/sΔt0.16 s 0.14 s0.02 sEstimating v from t 0.19 s to t 0.21 s:Δx 0.20 m 0.20 mv 0 m/sΔt0.21 s 0.19 sΔv 0 m/s 2 m/s 2 m/sd. a 10 m/s2Δt0.20 s 0 s0.20 sΔtAB ΔtBC ΔtCD 5.00 minΔxAB2ΔxABΔxABΔtAB vAB,avg (vB 0)vB 2ΔxBCBecause the train’s velocity is constant from B to C, ΔtBC .vBΔxCD2ΔxCDΔxCDΔtCD (0 v)vCD,avgvBB 2ΔtΔt ΔtBC CD , orBecause ΔxAB ΔxBC ΔxCD , AB22ΔtAB ΔtCD 2ΔtBC.We also know that ΔtAB ΔtBC ΔtCD 5.00 min.Thus, the time intervals are as follows:a. ΔtAB 2.00 minb. ΔtBC 1.00 minc. ΔtCD 2.00 minI Ch. 2–10Holt Physics Solution ManualCopyright by Holt, Rinehart and Winston. All rights reserved.35. ΔxAB ΔxBC ΔxCD

GivensSolutions36. y 19.6 m2 2a y ( 14.7 m/s)2 (2)( 9.81 m/s2)( 19.6 m)a. vf,1 v i ,1 vi,1 14.7 m/svi,2 14.7 m/s2a 9.81 m/s vf,1 21s2 385m2 / s2 60s2 24.5 m/s 24.5 m/s 6 m 2 / 1 m 2 / vf,2 v i,2m/sm) 2 2a y (1 4. 7 m /s ) 2 (2) ( 9. 81 2 )( 19 .6 vf,2 21s2 385m2 / s2 60s2 24.5 m/s 24.5 m/s 6 m 2 / 1 m 2 / Ivf,1 vi,1 24.5 m/s ( 14.7 m/s) 9.8 m/s t1 2 1.0 sa 9.81 m/s 9.81 m/s2vf,2 vi,2 24.5 m/s 14.7 m/s 39.2 m/s 2 4.00 s t2 a 9.81 m/s 9.81 m/s2difference in time t2 t1 4.00 s 1.0 s 3.0 sb. vf,1 24.5 m/s (See a.)vf,2 24.5 m/s (See a.) t 0.800 s11c. y1 vi,1 t 2 a t 2 ( 14.7 m/s)(0.800 s) 2 ( 9.81 m/s2)(0.800 s)2 y1 11.

Apr 02, 2019 · Teachers using HOLT PHYSICS may photocopy complete pages in sufficient quantities for classroom use only and not for resale. HOLT and the “Owl Design”are trademarks licensed to Holt, Rinehart and Winston, registered in the United States of America and/or other jurisdictions. Printed in t