PHYS 2310 Engineering Physics I Formula Sheets

Transcription

PHYS 2310 Engineering Physics I Formula SheetsChapters 1-18Chapter 1/Important NumbersChapter 2VelocityQuantityUnits for SI Base QuantitiesUnit NameUnit SymbolLengthMeterMTimeSecondsMass (not weight)Kilogramkg1 kg or 1 m1m1m1 second1mCommon Conversions1000 g or m1m100 cm1 inch1000 mm1 day1000 milliseconds 1 hour3.281 ft360 Average VelocityAverage Speed1 106 πœ‡π‘š2.54 cm86400 seconds3600 seconds2πœ‹ radImportant Constants/MeasurementsMass of Earth5.98 1024 kgRadius of Earth6.38 106 m1 u (Atomic Mass Unit)1.661 10 27 kgDensity of water1 𝑔/π‘π‘š3 or 1000 π‘˜π‘”/π‘š3g (on earth)9.8 m/s 2CircumferenceSurface area(sphere)DensityCommon geometric FormulasArea circle𝐢 2πœ‹π‘Ÿπ‘†π΄ 4πœ‹π‘Ÿ 2Volume (rectangular solid)Instantaneous Velocityπ‘‰π‘Žπ‘£π‘” π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘₯ π‘‘π‘–π‘šπ‘’ π‘‘π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’π‘‘π‘–π‘šπ‘’Μ… 𝑑π‘₯ π‘₯𝑣 lim 𝑑 0 π‘‘π‘‘π‘‘π‘ π‘Žπ‘£π‘” Average Acceleration 𝑣 𝑑𝑑𝑣 𝑑2 π‘₯π‘Ž 𝑑𝑑 𝑑𝑑 2π‘Žπ‘Žπ‘£π‘” Motion of a particle with constant acceleration𝐴 πœ‹π‘Ÿ4Volume (sphere)𝑉 πœ‹π‘Ÿ 33𝑉 𝑙 𝑀 β„Žπ‘‰ π‘Žπ‘Ÿπ‘’π‘Ž ionInstantaneousAcceleration22.2𝑣 𝑣0 π‘Žπ‘‘1 π‘₯ (𝑣0 𝑣)𝑑21 π‘₯ 𝑣0 𝑑 π‘Žπ‘‘ 22𝑣 2 𝑣02 2π‘Ž π‘₯2.112.172.152.162.72.82.9

Chapter 3Adding VectorsGeometricallyAdding VectorsGeometrically(Associative Law)Chapter 4π‘Žβƒ— 𝑏⃗⃗ 𝑏⃗⃗ π‘Žβƒ—3.2(π‘Žβƒ— 𝑏⃗⃗) 𝑐⃗ π‘Žβƒ— (𝑏⃗⃗ 𝑐⃗)3.33.5Magnitude of vector π‘Ž π‘Ž π‘Žπ‘₯2 π‘Žπ‘¦23.6Angle between x axisand vectorπ‘Žπ‘¦π‘‘π‘Žπ‘›πœƒ π‘Žπ‘₯3.6Unit vector notationπ‘Žβƒ— π‘Žπ‘₯ 𝑖̂ π‘Žπ‘¦ 𝑗̂ π‘Žπ‘§ π‘˜Μ‚3.7π‘Ÿπ‘₯ π‘Žπ‘₯ 𝑏π‘₯π‘Ÿπ‘¦ π‘Žπ‘¦ π‘π‘¦π‘Ÿπ‘§ π‘Žπ‘§ 𝑏𝑧3.103.113.12π‘Žβƒ— 𝑏⃗⃗ π‘Žπ‘π‘π‘œπ‘ πœƒ3.20Adding vectors inComponent FormScalar (dot product)Scalar (dot product)Projection of π‘Žβƒ— π‘œπ‘› 𝑏⃗⃗ orcomponent of π‘Žβƒ— π‘œπ‘› 𝑏⃗⃗Vector (cross) productmagnitudeπ‘Žβƒ— 𝑏⃗⃗ (π‘Žπ‘₯ 𝑖̂ π‘Žπ‘¦ 𝑗̂ π‘Žπ‘§ π‘˜Μ‚) (𝑏π‘₯ 𝑖̂ 𝑏𝑦 𝑗̂ 𝑏𝑧 π‘˜Μ‚ )π‘Žβƒ— 𝑏⃗⃗ π‘Žπ‘₯ 𝑏π‘₯ π‘Žπ‘¦ 𝑏𝑦 π‘Žπ‘§ 𝑏𝑧displacementAverage AccelerationInstantaneousAcceleration4.4 π‘₯ 𝑑4.8π‘‘π‘Ÿβƒ— 𝑣π‘₯ 𝑖̂ 𝑣𝑦 𝑗̂ 𝑣𝑧 π‘˜Μ‚π‘‘π‘‘ π‘£βƒ—π‘Žβƒ—π‘Žπ‘£π‘” π‘‘π‘‘π‘£βƒ—π‘Žβƒ— π‘‘π‘‘π‘Žβƒ— π‘Žπ‘₯ 𝑖̂ π‘Žπ‘¦ 𝑗̂ π‘Žπ‘§ π‘˜Μ‚π‘£βƒ— Projectile Motion𝑣𝑦 𝑣0 π‘ π‘–π‘›πœƒ0 𝑔𝑑3.241 𝑦 𝑣0 π‘ π‘–π‘›πœƒπ‘‘ 𝑔𝑑 2222𝑣𝑦 (𝑣0 π‘ π‘–π‘›πœƒ0 ) 2𝑔 yπ‘˜Μ‚π‘Žπ‘§ οΏ½οΏ½π‘Žπ‘¦π‘π‘¦4.154.21𝑣𝑦 𝑣0 π‘ π‘–π‘›πœƒ0 𝑔𝑑𝑐 π‘Žπ‘π‘ π‘–π‘›πœ™4.104.114.231 π‘₯ 𝑣0 π‘π‘œπ‘ πœƒπ‘‘ π‘Žπ‘₯ 𝑑 22or π‘₯ 𝑣0 π‘π‘œπ‘ πœƒπ‘‘ if π‘Žπ‘₯ 0π‘Žβƒ— 𝑏⃗⃗ 𝑏 orπ‘–Μ‚βƒ—βƒ—π‘Žβƒ—π‘₯𝑏 𝑑𝑒𝑑 π‘Žπ‘₯𝑏π‘₯ π‘Ÿβƒ— π‘₯𝑖̂ 𝑦𝑗̂ π‘§π‘˜Μ‚βƒ—βƒ—π‘Žπ‘£π‘” 𝑉Instantaneous Velocity3.22π‘Žβƒ—π‘₯𝑏⃗⃗ (π‘Žπ‘₯ 𝑖̂ π‘Žπ‘¦ 𝑗̂ π‘Žπ‘§ π‘˜Μ‚)π‘₯(𝑏π‘₯ 𝑖̂ 𝑏𝑦 𝑗̂ 𝑏𝑧 π‘˜Μ‚ ) (π‘Žπ‘¦ 𝑏𝑧 𝑏𝑦 π‘Žπ‘§ )𝑖̂ (π‘Žπ‘§ 𝑏π‘₯ 𝑏𝑧 π‘Žπ‘₯ )𝑗̂ (π‘Žπ‘₯ 𝑏𝑦 𝑏π‘₯ π‘Žπ‘¦ )π‘˜Μ‚Vector (cross product)4.4Average Velocityπ‘Žπ‘₯ π‘Žπ‘π‘œπ‘ πœƒπ‘Žπ‘¦ π‘Žπ‘ π‘–π‘›πœƒComponents of Vectorsπ‘Ÿβƒ— π‘₯𝑖̂ 𝑦𝑗̂ π‘§π‘˜Μ‚Position vectorRelative MotionUniform CircularMotion𝑦 (π‘‘π‘Žπ‘›πœƒ0 )π‘₯ 𝑅 𝑔π‘₯2(𝑣0 π‘π‘œπ‘ πœƒ0 )2𝑣02sin(2πœƒ0 )𝑔⃗⃗⃗⃗⃗⃗⃗𝑣𝐴𝐢 ⃗⃗⃗⃗⃗⃗⃗𝑣𝐴𝐡 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—π‘£π΅πΆπ‘Žπ΄π΅ οΏ½οΏ½οΏ½π΄π‘Ž 𝑣2π‘Ÿπ‘‡ 2πœ‹π‘Ÿπ‘£4.254.264.444.454.344.35

GeneralComponent formChapter 5Chapter 6Newton’s Second LawFriction𝐹⃗𝑛𝑒𝑑 π‘šπ‘Žβƒ—πΉπ‘›π‘’π‘‘,π‘₯ π‘šπ‘Žπ‘₯𝐹𝑛𝑒𝑑,𝑦 π‘šπ‘Žπ‘¦πΉπ‘›π‘’π‘‘,𝑧 π‘šπ‘Žπ‘¦5.1Kinetic FrictionalWeight𝐹𝑔 π‘šπ‘”π‘Š π‘šπ‘”π‘“βƒ—π‘ ,π‘šπ‘Žπ‘₯ πœ‡π‘  𝐹𝑁6.1π‘“βƒ—π‘˜ πœ‡π‘˜ 𝐹𝑁6.25.2Drag ForceGravitational ForceGravitational ForceStatic Friction(maximum)Terminal velocity1𝐷 πΆπœŒπ΄π‘£ 222𝐹𝑔𝑣𝑑 Centripetal Force𝑣2π‘Ž 𝑅𝐹 π‘šπ‘£ 2𝑅6.176.18

Chapter 7Work- Kinetic EnergyTheorem7.1π‘Š πΉπ‘‘π‘π‘œπ‘ πœƒ 𝐹⃗ 𝑑⃗7.77.8Spring Force (Hooke’slaw)Work done by springWork done by VariableForceAverage Power(rate at which thatforce does work on anobject)Instantaneous οΏ½οΏ½οΏ½ Mechanical EnergyπΈπ‘šπ‘’π‘ 𝐾 π‘ˆ8.127.15Principle ofconservation ofmechanical energy𝐾1 π‘ˆ1 𝐾2 π‘ˆ2πΈπ‘šπ‘’π‘ 𝐾 π‘ˆ 08.188.177.207.21Force acting on particle𝑧𝑓𝑃 7.36π‘§π‘–π‘Š π‘‘π‘‘π‘Š πΉπ‘‰π‘π‘œπ‘ πœƒ 𝐹⃗ 𝑣⃗𝑑𝑑8.78.117.25π‘Š 𝐹π‘₯ 𝑑π‘₯ 𝐹𝑦 𝑑𝑦 𝐹𝑧 𝑑𝑧 π‘ˆ π‘šπ‘” 𝑦1 2π‘˜π‘₯27.12 𝐾 π‘Šπ‘Ž π‘Šπ‘”π‘Šπ‘Ž π‘Žπ‘π‘π‘™π‘–π‘’π‘‘ πΉπ‘œπ‘Ÿπ‘π‘’πΉβƒ—π‘  π‘˜π‘‘βƒ—πΉπ‘₯ π‘˜π‘₯ (along x-axis)Gravitational PotentialEnergy8.18.6π‘ˆ(π‘₯) π‘Šπ‘” π‘šπ‘”π‘‘π‘π‘œπ‘ πœ™1 2 1 2π‘˜π‘₯ π‘˜π‘₯2 𝑖 2 𝑓 π‘ˆ π‘Š 𝐹(π‘₯)𝑑π‘₯Elastic Potential Energy7.10π‘Šπ‘  Potential Energyπ‘₯𝑖 𝐾 𝐾𝑓 𝐾0 π‘ŠWork done by gravityWork done bylifting/lowering objectπ‘₯𝑓1𝐾 π‘šπ‘£ 22Kinetic EnergyWork done by constantForceChapter 87.427.437.47Work on System byexternal forceWith no frictionWork on System byexternal forceWith frictionChange in thermalenergyConservation of Energy*if isolated W 0𝐹(π‘₯) π‘‘π‘ˆ(π‘₯)𝑑π‘₯8.22π‘Š πΈπ‘šπ‘’π‘ 𝐾 π‘ˆ8.258.26π‘Š πΈπ‘šπ‘’π‘ πΈπ‘‘β„Ž8.33 πΈπ‘‘β„Ž π‘“π‘˜ π‘‘π‘π‘œπ‘ πœƒ8.31π‘Š 𝐸 πΈπ‘šπ‘’π‘ πΈπ‘‘β„Ž 𝐸𝑖𝑛𝑑8.35Average PowerInstantaneous Power**In General Physics, Kinetic Energy is abbreviated to KE and Potential Energy is PEπ‘ƒπ‘Žπ‘£π‘” 𝑃 𝐸 𝑑𝑑𝐸𝑑𝑑8.408.41

Chapter 9Impulse and Momentum𝑑𝑓Impulse𝐽⃗ 𝐹⃗ (𝑑)𝑑𝑑𝑑𝑖9.35𝑝⃗ π‘šπ‘£βƒ—9.22𝐽⃗ Δ𝑝⃗ 𝑝⃗𝑓 𝑝⃗𝑖𝑑𝑝⃗𝑑𝑑𝐹⃗𝑛𝑒𝑑 π‘šβƒ—π‘Žβƒ—π‘π‘œπ‘šπ‘ƒβƒ—βƒ— �𝑒𝑑 Newton’s 2nd lawSystem of Particles9.30𝐽 𝐹𝑛𝑒𝑑 𝑑Linear MomentumImpulse-MomentumTheoremCollision continued 𝐹⃗𝑛𝑒𝑑 9.319.32Inelastic CollisionConservation of LinearMomentum (in 2D)Average forceElastic Collision𝑛𝑛 𝑝 π‘š 𝑣 𝑑 𝑑 π‘šπΉπ‘Žπ‘£π‘” 𝑣 𝑑2π‘š1 ()π‘£π‘š1 π‘š2 1𝑖𝑛9.149.259.27Center of mass locationπ‘Ÿβƒ—π‘π‘œπ‘š1 π‘šπ‘– π‘Ÿβƒ—π‘–π‘€9.67𝑖 1π‘›π‘£βƒ—π‘π‘œπ‘š 1 π‘šπ‘– 𝑣⃗𝑖𝑀Rocket EquationsThrust (Rvrel)π‘…π‘£π‘Ÿπ‘’π‘™ π‘€π‘Ž9.68Change in velocity9.429.43𝑝⃗1𝑖 𝑝⃗2𝑖 𝑝⃗1𝑓 𝑝⃗2𝑓9.509.519.78𝐾1𝑖 𝐾2𝑖 𝐾1𝑓 𝐾2𝑓9.8𝑖 1𝑃⃗⃗ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ƒβƒ—βƒ—π‘– π‘ƒβƒ—βƒ—π‘“π‘š1 𝑣𝑖1 π‘š2 𝑣12 π‘š1 𝑣𝑓1 π‘š2 𝑣𝑓29.379.40Center of Massπ‘‘π‘‘π‘š1 π‘š2𝑣1𝑓 ()π‘£π‘š1 π‘š2 1𝑖9.779.22Collision𝑣2𝑓𝑃⃗⃗1𝑖 𝑃⃗⃗2𝑖 𝑃⃗⃗1𝑓 𝑃⃗⃗2π‘“πΉπ‘Žπ‘£π‘” Center of mass velocityFinal Velocity of 2objects in a head-oncollision where oneobject is initially at rest1: moving object2: object at restConservation of LinearMomentum (in 1D)π‘š1 𝑣01 π‘š2 𝑣02 (π‘š1 π‘š2 )𝑣𝑓Δ𝑣 π‘£π‘Ÿπ‘’π‘™ 𝑙𝑛𝑀𝑖𝑀𝑓9.889.88

Chapter 10Angular displacement(in radiansAverage angularvelocityInstantaneous VelocityAverage angularaccelerationInstantaneous angularaccelerationπ‘ π‘ŸΞ”πœƒ πœƒ2 πœƒ1 πœƒπœ”π‘Žπ‘£π‘” π‘‘π‘‘πœƒπœ” 𝑑𝑑 πœ”π›Όπ‘Žπ‘£π‘” π‘‘π‘‘πœ”π›Ό 𝑑𝑑10.110.4πœƒ Rotational Kinematicsπœ” πœ”0 𝛼𝑑1Ξ”πœƒ πœ”0 𝑑 𝛼𝑑 2222πœ” πœ”0 2π›ΌΞ”πœƒ1Ξ”πœƒ (πœ” πœ”0 )𝑑21Ξ”πœƒ πœ”π‘‘ 𝛼𝑑 2210.510.610.710.810.1310.1410.15𝐼 πΌπ‘π‘œπ‘š π‘€β„Ž210.36𝜏 π‘ŸπΉπ‘‘ π‘Ÿ 𝐹 π‘ŸπΉπ‘ π‘–π‘›πœƒ10.3910.41Newton’s Second Lawπœπ‘›π‘’π‘‘ 𝐼𝛼10.45Rotational work doneby a toqueπ‘Š πœπ‘‘πœƒTorqueRotational KineticEnergyWork-kinetic energytheorem𝑣 πœ”π‘Ÿ10.18Tangential Accelerationπ‘Žπ‘‘ π›Όπ‘Ÿ10.192𝑣 πœ”2 π‘Ÿπ‘Ÿ10.232πœ‹π‘Ÿ 2πœ‹ π‘£πœ”10.1910.20𝑇 10.35Power in rotationalmotionVelocityPeriod𝐼 π‘Ÿ 2 π‘‘π‘šRotation inertia(discrete particlesystem)Parallel Axis Theoremh perpendiculardistance between twoaxesπœƒπ‘“Relationship Between Angular and Linear Variablesπ‘Žπ‘Ÿ 10.3410.1210.16Radical component of π‘Žβƒ—πΌ π‘šπ‘– π‘Ÿπ‘–2Rotation inertiaπœƒπ‘–π‘Š 𝜏 πœƒ (𝜏 constant)π‘‘π‘Šπ‘ƒ πœπœ”π‘‘π‘‘1𝐾 πΌπœ”2211 𝐾 𝐾𝑓 𝐾𝑖 πΌπœ”π‘“2 πΌπœ”π‘–2 π‘Š2210.5310.5410.5510.3410.52

Moments of Inertia I for various rigid objects of Mass MThin walled hollow cylinder or hoopabout central axisAnnular cylinder (or ring) aboutcentral axis𝐼 𝑀𝑅 21𝐼 𝑀(𝑅12 𝑅22 )2Solid Sphere, axis through center2𝐼 𝑀𝑅 25Thin rod, axis perpendicular to rodand passing though endSolid Sphere, axis tangent to surface7𝐼 𝑀𝑅 25Thin Rectangular sheet (slab), axisparallel to sheet and passing thoughcenter of the other edgeSolid cylinder or disk about centralaxis1𝐼 𝑀𝑅 22Thin Walled spherical shell, axisthrough centerSolid cylinder or disk about centraldiameter11𝐼 𝑀𝑅 2 𝑀𝐿2412Thin rod, axis perpendicular to rodand passing though center2𝐼 𝑀𝑅 23Thin Rectangular sheet (slab , axisalong one edge𝐼 1𝑀𝐿212Thin rectangular sheet (slab) aboutperpendicular axis through center1𝐼 𝑀𝐿23𝐼 1𝑀𝐿2121𝐼 𝑀𝐿23𝐼 1𝑀(π‘Ž2 𝑏 2 )12

Chapter 11Rolling Bodies (wheel)Speed of rolling wheelKinetic Energy of RollingWheelAcceleration of rollingwheelAcceleration along x-axisextending up the rampπ‘£π‘π‘œπ‘š πœ”π‘…11.2Angular Momentum112𝐾 πΌπ‘π‘œπ‘š πœ”2 π‘€π‘£π‘π‘œπ‘š2211.5Magnitude of AngularMomentumπ‘Žπ‘π‘œπ‘š οΏ½οΏ½οΏ½ 𝐼1 π‘π‘œπ‘š2𝑀𝑅11.10Magnitude of torqueNewton’s 2nd Lawπœβƒ— π‘Ÿβƒ— 𝐹⃗11.14𝜏 π‘ŸπΉ π‘Ÿ 𝐹 οΏ½οΏ½οΏ½ ⃗⃗𝑑ℓ𝑑𝑑ℓ π‘Ÿπ‘šπ‘£π‘ π‘–π‘›πœ™β„“ π‘Ÿπ‘ π‘Ÿπ‘šπ‘£ 11.1811.1911.21𝑛Angular momentum of asystem of particlesβƒ—βƒ— ⃗⃗𝐿ℓ𝑖𝑖 1πœβƒ—π‘›π‘’π‘‘ Torque as a vectorTorqueAngular Momentumβƒ—βƒ— ⃗𝑣⃗)𝑣 βƒ—β„“βƒ— βƒ—π‘Ÿβƒ— ⃗𝑝⃗ π‘š(π‘Ÿβƒ—βƒ—π‘‘πΏπ‘‘π‘‘Angular Momentum continuedAngular Momentum of a𝐿 πΌπœ”rotating rigid bodyConservation of angular𝐿⃗⃗ 𝑖 sion of a GyroscopePrecession rateΞ© π‘€π‘”π‘ŸπΌπœ”11.31

Chapter 12Chapter 13Static Equilibrium12.3Gravitational Force(Newton’s law ofgravitation)πœβƒ—π‘›π‘’π‘‘ 012.5Principle ofSuperposition𝐹⃗𝑛𝑒𝑑,π‘₯ 0, 𝐹⃗𝑛𝑒𝑑,𝑦 012.712.8𝐹⃗𝑛𝑒𝑑 0If forces lie on thexy-planeStress (force per unitarea)Strain (fractionalchange in length)Stress (pressure)Tension/CompressionE: Young’s modulusShearing StressG: Shear modulusHydraulic StressB: Bulk modulusπœβƒ—π‘›π‘’π‘‘,𝑧 0π‘ π‘‘π‘Ÿπ‘’π‘ π‘  π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›πΉπ‘ƒ 𝐴𝐹 𝐿 𝐸𝐴𝐿𝐹 π‘₯ 𝐺𝐴𝐿 𝑉𝑝 𝐡𝑉12.912.22𝐹 𝐺𝐹⃗1,𝑛𝑒𝑑 𝐹⃗1𝑖𝐹⃗1 𝑑𝐹⃗Escape SpeedKepler’s 3rd Law(law of periods)Energy for bject incircular orbit13.6πΊπ‘€π‘Ÿ2πΊπ‘šπ‘€πΉ π‘Ÿπ‘…3πΊπ‘€π‘šπ‘ˆ π‘Ÿ13.11π‘Žπ‘” Gravitational PotentialEnergy12.24π‘ˆ (13.1913.21πΊπ‘š1 π‘š2 πΊπ‘š1 π‘š3 πΊπ‘š2 π‘š3 )π‘Ÿ12π‘Ÿ13π‘Ÿ232𝐺𝑀𝑣 𝑅𝑇2 (π‘ˆ 4πœ‹ 2 3)π‘ŸπΊπ‘€πΊπ‘€π‘šπ‘ŸπΎ 𝐸 οΏ½οΏ½π‘šMechanical Energy𝐸 (elliptical orbit)2π‘Ž 11*Note: 𝐺 6.6704 10𝑁 π‘š2 /π‘˜π‘”2Mechanical Energy(circular orbit)13.5𝑖 2Gravitation within aspherical Shell12.2313.1𝑛Gravitational Forceacting on a particlefrom an extendedbodyGravitationalaccelerationPotential energy on asystem (3 particles)π‘š1 π‘š2π‘Ÿ213.3413.2113.3813.4013.42

Chapter 14Density π‘š π‘‰π‘šπœŒ π‘‰πœŒ Pressure and depth ina static FluidP1 is higher than P2Gauge PressureArchimedes’ principleMass Flow RateVolume flow rateBernoulli’s EquationEquation of continuityEquation of continuitywhen14.114.2 𝐹 𝐴𝐹𝑝 𝐴14.314.4𝑝2 𝑝1 πœŒπ‘”(𝑦1 𝑦2 )𝑝 𝑝0 πœŒπ‘”β„Ž14.714.8𝑝 PressureChapter 15Angular frequencyAccelerationKinetic and PotentialEnergy𝐹𝑏 π‘šπ‘“ 𝑔14.16π‘…π‘š πœŒπ‘…π‘‰ πœŒπ΄π‘£14.25𝑅𝑉 𝐴𝑣14.24𝑅𝑉 𝐴𝑣 tyπœŒπ‘”β„Ž1𝑝 πœŒπ‘£ 2 πœŒπ‘”π‘¦ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘2π‘…π‘š πœŒπ‘…π‘‰ πœŒπ΄π‘£ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘Frequencycycles per time14.29Angular frequency𝑓 1𝑇15.2π‘₯ π‘₯π‘š cos(πœ”π‘‘ πœ™)πœ” 2πœ‹ 2πœ‹π‘“π‘‡15.315.5𝑣 πœ”π‘₯π‘š sin(πœ”π‘‘ πœ™)15.6π‘Ž πœ”2 π‘₯π‘š cos(πœ”π‘‘ πœ™)15.711𝐾 π‘šπ‘£ 2 π‘ˆ π‘˜π‘₯ 222π‘˜πœ” π‘š15.12Period𝑇 2πœ‹ π‘šπ‘˜15.13Torsion pendulum𝐼𝑇 2πœ‹ π‘˜15.23Simple Pendulum𝐿𝑇 2πœ‹ 𝑔15.28Physical Pendulum𝐼𝑇 2πœ‹ π‘šπ‘”πΏ15.2914.2514.24Damping force𝐹⃗𝑑 𝑏𝑣⃗displacementπ‘₯(𝑑) π‘₯π‘š 𝑒 2π‘š cos(πœ”β€² 𝑑 πœ™)15.42Angular frequencyπ‘˜π‘2πœ”β€² π‘š 4π‘š215.43Mechanical Energy1 2 𝑏𝑑𝐸(𝑑) π‘˜π‘₯π‘šπ‘’ π‘š215.44𝑏𝑑

Chapter 16Sinusoidal WavesMathematical form(positive direction)Angular wave numberAngular frequencyWave speedAverage Power𝑦(π‘₯, 𝑑) π‘¦π‘š sin(π‘˜π‘₯ πœ”π‘‘)2πœ‹π‘˜ πœ†2πœ‹πœ” 2πœ‹π‘“π‘‡π‘£ πœ” πœ† πœ†π‘“π‘˜ 𝑇12π‘ƒπ‘Žπ‘£π‘” πœ‡π‘£πœ”2 π‘¦π‘š2Traveling Wave Form16.216.5𝑦(π‘₯, 𝑑) β„Ž(π‘˜π‘₯ πœ”π‘‘)16.17πœπ‘£ πœ‡16.2611𝑦 β€² (π‘₯, 𝑑) [2π‘¦π‘š cos ( πœ™)] sin (π‘˜π‘₯ πœ”π‘‘ πœ™)2216.51𝑦 β€² (π‘₯, 𝑑) [2π‘¦π‘š sin(π‘˜π‘₯)]cos(πœ”π‘‘)16.60Wave speed onstretched string16.9Resulting wave when 2waves only differ byphase constant16.13Standing wave16.33Resonant frequency𝑣𝑣𝑓 πœ† 𝑛 2𝐿 for n 1,2, 16.66

Chapter 17Sound WavesStanding Waves Patterns in Pipes𝐡𝑣 𝜌17.3𝑠 π‘ π‘š cos(π‘˜π‘₯ πœ”π‘‘)17.12Change in pressureΔ𝑝 Ξ”π‘π‘š sin(π‘˜π‘₯ πœ”π‘‘)17.13Standing wavefrequency (open atboth ends)Standing wavefrequency (open atone end)Pressure amplitudeΞ”π‘π‘š (π‘£πœŒπœ”)π‘ π‘š17.14beatsSpeed of sound wavedisplacement𝑣𝑓 πœ† 𝑣𝑓 πœ† 𝑛𝑣2𝐿𝑛𝑣4𝐿for n 1,2,317.39for n 1,3,517.41π‘“π‘π‘’π‘Žπ‘‘ 𝑓1 𝑓217.46InterferencePhase differenceFully ConstructiveInterferenceFull DestructiveinterferenceMechanical EnergyΔ𝐿2πœ‹πœ†πœ™ π‘š(2πœ‹) for m 0,1,2 Δ𝐿 0,1,2πœ†πœ™ (2π‘š 1)πœ‹ for m 0,12Δ𝐿 .5,1.5,2.5 πœ†πœ™ 1 2 𝑏𝑑𝐸(𝑑) π‘˜π‘₯π‘šπ‘’ π‘š217.2117.2217.2317.2417.2515.44Doppler EffectSource Moving towardstationary observerSource Moving awayfrom stationaryobserverObserver movingtoward stationarysourceObserver moving awayfrom stationary sourceSound Intensity𝐼 IntensityIntensity -uniform inall directions𝑃𝐴12𝐼 πœŒπ‘£πœ”2 π‘ π‘š2𝐼 𝑃𝑠4πœ‹π‘Ÿ 2𝑓′ 𝑓𝑣𝑣 𝑣𝑠17.53𝑓′ 𝑓𝑣𝑣 𝑣𝑠17.54𝑣 𝑣𝐷𝑣𝑣 𝑣𝐷𝑓′ 𝑓𝑣𝑓′ 𝑓Shockwave17.2617.2717.29Intensity level indecibels𝐼𝛽 (10𝑑𝐡) log ( )πΌπ‘œ17.29Mechanical Energy1 2 𝑏𝑑𝐸(𝑑) π‘˜π‘₯π‘šπ‘’ π‘š215.44Half-angle πœƒ of Machconeπ‘ π‘–π‘›πœƒ 𝑣𝑣𝑠17.4917.5117.57

Chapter 18Temperature ScalesFahrenheit to CelsiusCelsius to Fahrenheit5𝑇𝐢 (𝑇𝐹 32)99𝑇𝐹 𝑇𝐢 325𝑇 𝑇𝐢 273.15Celsius to KelvinFirst Law of Thermodynamics18.818.818.7 𝐸𝑖𝑛𝑑 𝐸𝑖𝑛𝑑,𝑓 𝐸𝑖𝑛𝑑,𝑖 𝑄 π‘ŠFirst Law of18.26Thermodynamics18.27𝑑𝐸𝑖𝑛𝑑 𝑑𝑄 π‘‘π‘ŠNote: 𝐸𝑖𝑛𝑑 Change in Internal EnergyQ (heat) is positive when the system absorbs heat and negative when itloses heat. W (work) is work done by system. W is positive when expandingand negative contracts because of an external forceThermal ExpansionApplications of First LawLinear Thermal Expansion 𝐿 𝐿𝛼 𝑇18.9Volume Thermal Expansion 𝑉 𝑉𝛽 𝑇18.10Q 0 𝐸𝑖𝑛𝑑 π‘ŠAdiabatic(no heat flow)W 0 𝐸𝑖𝑛𝑑 𝑄 𝐸𝑖𝑛𝑑 0Q W𝑄 π‘Š 𝐸𝑖𝑛𝑑 0(constant volume)HeatHeat and temperaturechange𝑄 𝐢(𝑇𝑓 𝑇𝑖 )𝑄 π‘π‘š(𝑇𝑓 𝑇𝑖 )18.1318.14Heat and phase change𝑄 πΏπ‘š18.16Power (Conducted)π‘ƒπ‘π‘œπ‘›π‘‘π‘„π‘‡π» 𝑇𝐢 π‘˜π΄π‘‘πΏFree expansionsMisc.𝑉𝑓P Q/tPowerCyclical process18.32Rate objects absorbsenergy4π‘ƒπ‘Žπ‘π‘  πœŽπœ–π΄π‘‡π‘’π‘›π‘£18.39Power from radiationπ‘ƒπ‘Ÿπ‘Žπ‘‘ πœŽπœ–π΄π‘‡ 418.38Work Associated withVolume Changeπ‘Š π‘‘π‘Š 𝑝𝑑𝑉𝑉𝑖18.25π‘Š 𝑝 π‘£πœŽ 5.6704 10 8 π‘Š/π‘š2 𝐾 4Revised 7/20/17

Jul 20, 2017Β Β· PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter 2 Units for SI Base Quantities Quantity Unit Name Unit Symbol Length Meter M Time Second s Mass (not weight) Kilogram kg Common Conversions 1 k