Similarity And Model Testing - University Of Iowa

Transcription

Similarity and Model Testing11. 5. 2014Hyunse Yoon, Ph.D.Assistant Research ScientistIIHR-Hydroscience & Engineeringe-mail: hyun-se-yoon@uiowa.edu

Modeling Model: A representation of a physical system that may be used to predictthe behavior of the system in some desired respect Prototype: The physical system for which the predictions are to be made2

Types of Similarity Three necessary conditions for complete similarity between amodel and a prototype:1) Geometric similarity2) Kinematic similarity3) Dynamic similarity3

1) Geometric Similarity A model and prototype are geometrically similar if and only if all bodydimensions in all three coordinates have the same linear scale ratio.𝛼𝛼 πΏπΏπ‘šπ‘š 𝐿𝐿or, πœ†πœ† 𝐿𝐿 πΏπΏπ‘šπ‘š All angles are preserved in geometric similarity. All flow directions arepreserved. The orientation of model and prototype with respect to thesurroundings must be identical.4

2) Kinematic Similarity Kinematic similarity requires that the model and prototype have thesame length scale and the same time scale ratio. One special case is incompressible frictionless flow with no free surface.These perfect-fluid flows are kinematically similar with independentlength and time scales, and no additional parameters are necessary.5

2) Kinematic Similarity – Contd. Frictionless flows with a free are kinematically similar iftheir 𝐹𝐹𝐹𝐹 are equal:orπ‘‰π‘‰π‘šπ‘š2𝑉𝑉 2πΉπΉπ‘Ÿπ‘Ÿπ‘šπ‘š πΉπΉπΉπΉπ‘”π‘”πΏπΏπ‘šπ‘š π‘”π‘”π‘”π‘”π‘‰π‘‰π‘šπ‘š 𝑉𝑉1πΏπΏπ‘šπ‘š 2𝐿𝐿 𝛼𝛼 In general, kinematic similarity depends on theachievement of dynamic similarity if viscosity, surfacetension, or compressibility is important.6

Example 1: 𝐹𝐹𝐹𝐹 Similarity7

Example 1: 𝐹𝐹𝐹𝐹 Similarity – Contd.For 𝐹𝐹𝐹𝐹 similarity,Since 𝑄𝑄 πΏπ‘šπ‘š π‘‰π‘‰π‘‰π‘‰π‘šπ‘š 𝑉𝑉 π‘”π‘”π‘”π‘”π‘„π‘„π‘šπ‘š π‘‰π‘‰π‘šπ‘š π΄π΄π‘šπ‘šπ‘‰π‘‰π‘šπ‘š οΏ½οΏ½πΏπ‘šπ‘š 𝐴𝐴𝐿𝐿Thus, π‘„π‘„π‘šπ‘š 5𝛼𝛼 2 𝑄𝑄 125 12512 πŸπŸπŸ“πŸ“1 π΄π΄π‘šπ‘šπ΄π΄π‘šπ‘š 𝛼𝛼 2𝐴𝐴𝐴𝐴2 𝛼𝛼 215π‘„π‘„π‘šπ‘š1222 𝛼𝛼 𝛼𝛼 𝛼𝛼 𝑄𝑄2552πΏπΏπ‘šπ‘š 𝐿𝐿1𝛼𝛼 252𝟏𝟏 πŸ‘πŸ‘, 𝟏𝟏𝟏𝟏𝟏𝟏3000 𝟎𝟎. πŸ—πŸ—πŸ—πŸ— π¦π¦πŸ‘πŸ‘ /𝐬𝐬8

3) Dynamic Similarity Dynamic similarity exists when the model and the prototype have thesame length scale ratio (i.e., geometric similarity), time scale ratio (i.e.,kinematic similarity), and force scale (or mass scale) ratio. To be ensure of identical force and pressure coefficients between modeland prototype:1. Compressible flow: 𝑅𝑅𝑅𝑅 and 𝑀𝑀𝑀𝑀 are equal2. Incompressible flow:a. With no free surface: 𝑅𝑅𝑅𝑅 are equalb. With a free surface: 𝑅𝑅𝑅𝑅 and 𝐹𝐹𝐹𝐹 are equalc. If necessary, π‘Šπ‘Šπ‘Šπ‘Š and 𝐢𝐢𝐢𝐢 are equal9

Theory of Models Flow conditions for a model test are completely similar if all relevant dimensionlessparameters have the same corresponding values for the model and then prototype. For prototype: For model:Similarity requirement*Prediction equationΞ 1 πœ™πœ™ Ξ 2 , Ξ 3 , , Π𝑛𝑛Π1π‘šπ‘š πœ™πœ™ Ξ 2π‘šπ‘š , Ξ 3π‘šπ‘š , , Ξ π‘›π‘›π‘šπ‘šΞ 2π‘šπ‘š Ξ 2Ξ 3π‘šπ‘š Ξ 3 Π𝑛𝑛𝑛𝑛 Π𝑛𝑛Π1 Ξ 1π‘šπ‘š*Also referred as the model designconditions or modeling laws.10

Example 2: 𝑅𝑅𝑅𝑅 SimilarityDrag measurements were taken for a 5-cm diameter sphere in water at 20 Cto predict the drag force of a 1-m diameter balloon rising in air withstandard temperature and pressure. Determine (a) the sphere velocity if theballoon was rising at 3 m/s and (b) the drag force of the balloon if theresulting sphere drag was 10 N. Assume the drag 𝐷𝐷 is a function of thediameter 𝑑𝑑, the velocity 𝑉𝑉, and the fluid density 𝜌𝜌 and kinematic viscosity 𝜈𝜈.π‘‘π‘‘π‘šπ‘š 0.05 mπ·π·π‘šπ‘š 10 N at π‘‰π‘‰π‘šπ‘š ?watermodel𝐷𝐷 𝑓𝑓 𝑑𝑑, 𝑉𝑉, 𝜌𝜌, πœˆπœˆπ‘‘π‘‘ 1 mairprototype𝐷𝐷 ? at 𝑉𝑉 3 m/s11

Example 2: 𝑅𝑅𝑅𝑅 Similarity – Contd. Dimensional analysis Similarity requirement Prediction equation𝐷𝐷𝑉𝑉𝑉𝑉 πœ™πœ™πœŒπœŒπ‘‰π‘‰ 2 𝑑𝑑 2πœˆπœˆπ‘‰π‘‰π‘‰π‘‰ π‘‰π‘‰π‘šπ‘š π‘‘π‘‘π‘šπ‘š πœˆπœˆπ‘šπ‘šπœˆπœˆπ·π·π·π·π‘šπ‘š 2πœŒπœŒπ‘‰π‘‰ 2 𝑑𝑑 2 πœŒπœŒπ‘šπ‘š π‘‰π‘‰π‘šπ‘š2 π‘‘π‘‘π‘šπ‘š12

Example 2: 𝑅𝑅𝑅𝑅 Similarity – Contd.(a) From the similarity requirement:or𝑉𝑉𝑉𝑉 π‘‰π‘‰π‘šπ‘š π‘‘π‘‘π‘šπ‘š πœˆπœˆπ‘šπ‘šπœˆπœˆπ‘‰π‘‰π‘šπ‘š πœˆπœˆπ‘šπ‘šπœˆπœˆ1.004 10 6 m2 s 1.45 10 5 m2 sπ‘‘π‘‘π‘‰π‘‰π‘‘π‘‘π‘šπ‘š1m0.05 m3 m s 𝑉𝑉 4.15 m s13

Example 2: 𝑅𝑅𝑅𝑅 Similarity – Contd.(b) From the prediction equation:orπ·π·π·π·π‘šπ‘š 2πœŒπœŒπ‘‰π‘‰ 2 𝑑𝑑 2 πœŒπœŒπ‘šπ‘š π‘‰π‘‰π‘šπ‘š2 π‘‘π‘‘π‘šπ‘šπœŒπœŒπ·π· πœŒπœŒπ‘šπ‘š1.23 kg m3 998 kg m3π‘‰π‘‰π‘‰π‘‰π‘šπ‘š23 m s4.15 m π‘ π‘ π‘‘π‘‘π‘‘π‘‘π‘šπ‘š2 𝐷𝐷 2.6 N2π·π·π‘šπ‘š1m0.05 m210 N14

Example 3PropertyDiameter, 𝐷𝐷Angular velocity, πœ”πœ”Flow rate, 𝑄𝑄FluidModelPrototype8 in.12 in.40Ο€ rad/s60Ο€ rad/s?6 ft3/swaterwater15

Example 3 – Contd. Dimensional analysisΔ𝑝𝑝𝑀𝑀𝐿𝐿 1 𝑇𝑇 2π·π·πΏπΏπœ”πœ”πœŒπœŒπ‘‡π‘‡ 1𝑄𝑄𝑀𝑀𝐿𝐿 3𝐿𝐿3 𝑇𝑇 1π‘Ÿπ‘Ÿ 𝑛𝑛 π‘šπ‘š 5 3 2π‘šπ‘š 3 repeating variables: 𝐷𝐷 for 𝐿𝐿, πœ”πœ” for 𝑇𝑇, and 𝜌𝜌 for 𝑀𝑀Π1 π·π·π‘Žπ‘Ž πœ”πœ”π‘π‘ πœŒπœŒπ‘π‘ Δ𝑝𝑝 Μ‡ 𝐿𝐿 Μ‡ 𝐿𝐿(π‘Žπ‘Ž 3𝑐𝑐 1) 𝑇𝑇 Ξ 1 𝐷𝐷 2π‘Žπ‘Žπ‘‡π‘‡ 1 𝑏𝑏 2πœ”πœ”π‘€π‘€ 2 1πœŒπœŒπ‘π‘π‘€π‘€πΏπΏ 3𝑐𝑐 1𝑐𝑐𝑀𝑀𝐿𝐿 1 𝑇𝑇 2 Μ‡ 𝐿𝐿0 𝑇𝑇 0 𝑀𝑀0Δ𝑝𝑝Δ𝑝𝑝 πœŒπœŒπœ”πœ” 2 𝐷𝐷216

Example 3 – Contd. Dimensional analysis – contd.Ξ 2 𝐷𝐷 π‘Žπ‘Ž πœ”πœ”π‘π‘ πœŒπœŒπ‘π‘ 𝑄𝑄 Μ‡ 𝐿𝐿 Μ‡ 𝐿𝐿(π‘Žπ‘Ž 3𝑐𝑐 3) 𝑇𝑇 Dimensionless eq. Ξ 2 π·π·π‘Žπ‘Žπ‘‡π‘‡ 1 𝑏𝑏 1 3πœ”πœ”π‘π‘π‘€π‘€πΏπΏ 3𝑐𝑐𝐿𝐿3 𝑇𝑇 1𝑀𝑀𝑐𝑐 Μ‡ 𝐿𝐿0 𝑇𝑇 0 𝑀𝑀0 1𝑄𝑄𝑄𝑄 πœ”πœ”π·π· 3Δ𝑝𝑝𝑄𝑄 πœ™πœ™πœŒπœŒπœ”πœ” 2 𝐷𝐷2πœ”πœ”π·π·317

Example 3 – Contd. Similarity requirementorπ‘„π‘„π‘„π‘„π‘šπ‘š 3πœ”πœ”π·π·3 πœ”πœ”π‘šπ‘š π·π·π‘šπ‘šπœ”πœ”π‘šπ‘šπ‘„π‘„π‘šπ‘š πœ”πœ”40πœ‹πœ‹ rad s 60πœ‹πœ‹ rad sπ·π·π‘šπ‘šπ·π·8 in.12 in.33𝑄𝑄6 ft 3 s π‘„π‘„π‘šπ‘š 1.19 ft 3 s18

Example 3 – Contd. Prediction equationΞ”π‘π‘Ξ”π‘π‘π‘šπ‘š 2 2πœŒπœŒπœ”πœ” 2 𝐷𝐷2 πœŒπœŒπ‘šπ‘š οΏ½οΏ½ πœŒπœŒπ‘šπ‘š 1πœ”πœ”πœ”πœ”π‘šπ‘š60πœ‹πœ‹ rad s40πœ‹πœ‹ rad s22π·π·π·π·π‘šπ‘š12 in.8 in.5.522Ξ”π‘π‘π‘šπ‘š1.195.5 𝑝𝑝𝑝𝑝𝑝𝑝 Δ𝑝𝑝 27.8 𝑝𝑝𝑝𝑝𝑝𝑝19

Distorted Models It is not always possible to satisfy all the known similarityrequirements. Models for which one or more similarity requirements are notsatisfied are called β€œdistorted models.”20

Model Testing in Water(with a free surface) Geometric similarity 𝐹𝐹𝐹𝐹 similarity 𝑅𝑅𝑅𝑅 πΏπΏπ‘šπ‘š 𝛼𝛼𝐿𝐿 π‘‰π‘‰π‘šπ‘š πΏπΏπ‘šπ‘š 𝑉𝑉𝑉𝑉 πœˆπœˆπ‘šπ‘šπœˆπœˆπ‘‰π‘‰ 𝑔𝑔𝑔𝑔 πΏπΏπ‘šπ‘šπ‘‰π‘‰π‘šπ‘š 𝑉𝑉𝐿𝐿1/2 𝛼𝛼3πœˆπœˆπ‘šπ‘š πΏπΏπ‘šπ‘š π‘‰π‘‰π‘šπ‘š 𝛼𝛼 𝛼𝛼 𝛼𝛼 2𝜈𝜈𝐿𝐿 𝑉𝑉21

Example 422

Example 4 – Contd. For water at atmospheric pressure and at 𝑇𝑇 15.6 C, the prototypekinematic viscosity is 𝜈𝜈 1.12 10-6 m2/s. Required kinematic viscosity of model liquid: πœˆπœˆπ‘šπ‘š 3πœˆπœˆπ›Όπ›Ό 2 1.12 10 6110032 1.12 10 9 m2 sEven liquid mercury has a kinematic viscosity of order 10-7 m2/s – still two ordersof magnitude too large to satisfy the dynamic similarity. In addition, it would betoo expensive and hazardous to use in this model test.23

Model Testing in Water – Contd.(with a free surface)Alternatively, by keeping πœˆπœˆπ‘šπ‘š 𝜈𝜈, 𝑅𝑅𝑅𝑅 similarity𝐹𝐹𝐹𝐹 similarityπ‘‰π‘‰π‘šπ‘šπ‘”π‘”π‘šπ‘š πΏπΏπ‘šπ‘šπ‘‰π‘‰π‘šπ‘š πΏπΏπ‘šπ‘š 𝑉𝑉𝑉𝑉 πœˆπœˆπœˆπœˆπ‘šπ‘š 𝑉𝑉𝑔𝑔𝑔𝑔For example, for 𝛼𝛼 1/100, π‘”π‘”π‘šπ‘šπ‘‰π‘‰π‘šπ‘š π‘”π‘”π‘‰π‘‰π‘”π‘”π‘šπ‘š1 𝑔𝑔100 Again, impossible to achieve.π‘‰π‘‰π‘šπ‘šπΏπΏ 𝛼𝛼 1πΏπΏπ‘šπ‘šπ‘‰π‘‰ 32𝐿𝐿 𝛼𝛼 2 𝛼𝛼 1 𝛼𝛼 3πΏπΏπ‘šπ‘š 1 10624

Model Testing in Water – Contd.(with a free surface) In practice, water is used for both the model and the prototype, and the𝑅𝑅𝑅𝑅 similarity is unavoidably violated. The low-𝑅𝑅𝑅𝑅 model data are used to estimate by extrapolation the desiredhigh-𝑅𝑅𝑅𝑅 prototype data. There is considerable uncertainty in using extrapolation, but no otherpractical alternative in model testing.25

Model Testing in Water – Contd.(with a free surface: Ship model testing) Assume:𝐢𝐢𝑇𝑇 𝑓𝑓 𝑅𝑅𝑅𝑅, 𝐹𝐹𝐹𝐹 𝐢𝐢𝑀𝑀 𝐹𝐹𝐹𝐹 𝐢𝐢𝑣𝑣 𝑅𝑅𝑅𝑅 𝐢𝐢𝑇𝑇 Total resistance coefficient πΆπΆπ‘Šπ‘Š Wave resistance coefficient 𝐢𝐢𝑣𝑣 Viscous friction resistance coefficientModel Testing with the 𝐹𝐹𝐹𝐹 similarity𝐢𝐢𝑀𝑀 𝐢𝐢𝑀𝑀𝑀𝑀 𝐢𝐢𝑇𝑇𝑇𝑇 𝐢𝐢𝑣𝑣𝑣𝑣Extrapolation (with 𝐢𝐢𝑀𝑀𝑀𝑀 𝐢𝐢𝐢𝐢)𝐢𝐢𝑇𝑇 𝐢𝐢𝑀𝑀 𝐢𝐢𝑣𝑣 𝐢𝐢𝑇𝑇𝑇𝑇 𝐢𝐢𝑣𝑣𝑣𝑣 𝐢𝐢𝑣𝑣𝐢𝐢𝑣𝑣𝑣𝑣 π‘…π‘…π‘’π‘’π‘šπ‘š and 𝐢𝐢𝑣𝑣 𝑅𝑅𝑅𝑅 obtained from flat plate data with samesurface area of the model and the proto type, respectively.26

Model Testing in Air Geometric similarity: 𝑀𝑀𝑀𝑀 similarity: 𝑅𝑅𝑅𝑅 similarity:π‘‰π‘‰π‘šπ‘š 𝑉𝑉 π‘Žπ‘Žπ‘šπ‘š π‘Žπ‘ŽπΏπΏπ‘šπ‘š π‘‰π‘‰π‘šπ‘š 𝐿𝐿𝐿𝐿 πœˆπœˆπ‘šπ‘šπœˆπœˆ πΏπΏπ‘šπ‘š 𝛼𝛼𝐿𝐿 π‘‰π‘‰π‘šπ‘š π‘Žπ‘Žπ‘šπ‘š π‘‰π‘‰π‘Žπ‘Žπœˆπœˆπ‘šπ‘š πΏπΏπ‘šπ‘š π‘‰π‘‰π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š 𝛼𝛼 𝜈𝜈𝐿𝐿 π‘‰π‘‰π‘Žπ‘Ž Since the prototype is an air operation, need a model fluid of low viscosityand high speed of sound, e.g., hydrogen – too expensive and danger. 𝑅𝑅𝑅𝑅 similarity is commonly violated in wind tunnel testing.27

Example 528

Example 5 – Contd. or𝑅𝑅𝑅𝑅 similarity:π‘‰π‘‰π‘šπ‘š since πΏπΏπ‘šπ‘š 𝐿𝐿 1/10. If πœˆπœˆπ‘šπ‘š 𝜈𝜈 1, Also, if 𝑉𝑉 55 mph,πœˆπœˆπ‘šπ‘šπœˆπœˆπ‘‰π‘‰π‘šπ‘š πΏπΏπ‘šπ‘š 𝑉𝑉𝑉𝑉 ��𝑉 10π‘‰π‘‰πœˆπœˆπΏπΏπ‘šπ‘šπ‘‰π‘‰π‘šπ‘š 10π‘‰π‘‰π‘‰π‘‰π‘šπ‘š 550 mph Too large for simple tests. In addition, 𝑀𝑀𝑀𝑀 0.7 for the model and thecompressibility effects become important while they are not for the prototypewith 𝑀𝑀𝑀𝑀 0.07. We will need πœˆπœˆπ‘šπ‘š 𝜈𝜈 1 for more realistic π‘‰π‘‰π‘šπ‘š .29

Example 5 – Contd. 𝜈𝜈 variation with 𝑇𝑇 for air at standard atmospheric pressure (scaled with 𝜈𝜈at 10 C): Thus, it would be better to have a colder wind tunnel. However, even with𝑇𝑇 -40 C, which gives πœˆπœˆπ‘šπ‘š 𝜈𝜈 0.707, the required π‘‰π‘‰π‘šπ‘š 10(0.707)(55) 389 mph.30

Model Testing in Air – Contd. In practice, wind tunnel tests are performed at several speeds near themaximum operating speed, and then extrapolate the results to the fullscale Reynolds number. While drag coefficient 𝐢𝐢𝐷𝐷 is a strong function of Reynolds number at lowvalues of 𝑅𝑅𝑅𝑅, for flows over many objects (especially β€œbluff” objects), theflow is Reynolds number independent above some threshold value of 𝑅𝑅𝑅𝑅.31

Example 6𝐹𝐹𝐷𝐷 𝜌𝜌𝜌𝜌𝜌𝜌 πœ™πœ™12 π΄π΄πœ‡πœ‡πœŒπœŒπ‘‰π‘‰2π‘Šπ‘Š Width of the truck𝐴𝐴 Frontal area32

Example 6 – Contd.π‘…π‘…π‘’π‘’π‘šπ‘šπ‘…π‘…π‘…π‘… οΏ½οΏ½πœ‡ πœŒπœŒπ‘šπ‘š π‘‰π‘‰π‘šπ‘š π‘Šπ‘Šπ‘šπ‘šπœ‡πœ‡π‘šπ‘š kg kgm1.184 3 26.80.159 msm1.849 10 5 kg s/mm1.184 3 26.816 0.159 msm1.849 10 5 kg s/m 7.13 105 4.37 106Reynolds number independence is achieved for 𝑅𝑅𝑅𝑅 5.5 105 , thus𝐢𝐢𝐷𝐷 12πΉπΉπ·π·πœŒπœŒπ‘‰π‘‰ 2 𝐴𝐴12 𝐢𝐢𝐷𝐷𝐷𝐷 0.76 from the wind tunnel data 𝐹𝐹𝐷𝐷 πœŒπœŒπ‘‰π‘‰ 2 𝐴𝐴 𝐢𝐢𝐷𝐷 12kg1.184 3m 3.4 π‘˜π‘˜Nm 226.8s162 0.159m 0.257m 0.7633

Similarity and Model Testing 11. 5. 2014 . Hyunse Yoon, Ph.D. Assistant Research Scientist . IIHR-Hydroscience & Engineering . e-mail: hyun-se-yoon@uiowa.edu