Confidence-aware Levenberg-Marquardt Optimization For Joint .

Transcription

Confidence-aware Levenberg-Marquardt Optimizationfor Joint Motion Estimation and Super-Resolution2016 IEEE International Conference on Image Processing (ICIP’16)Cosmin Bercea, Andreas Maier, Thomas KöhlerSeptember 28, 2016Pattern Recognition Lab (CS 5)

Introduction

Multiframe Super-Resolution: Basic Idea Given: multiple low-resolution images Idea: Exploit subpixel motion to reconstruct high-resolution image26 low-resolution frames3 x High-resolution imageC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP3

Robustness IssuesSuper-resolution reconstruction is sensitive to: Motion estimation uncertaintyRegistration is error-proneSuperresolved image11Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP4

Robustness IssuesSuper-resolution reconstruction is sensitive to: Motion estimation uncertaintyRegistration is error-prone Outliers Deviation of the real and assumed motion model! e.g.: non-rigid deformation assuming rigid motion Invalid pixels Space variant noise .Superresolved image22Yu He et al., “A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution.,” IEEE TIP, 2007.C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP5

Proposed Method

Modeling the Image Formation Given: sequence of low-resolution framesy (y(1) , . . . , y(K ) ) , y(k ) 2 RM y is assembled from the HR image x 2 RN by:y W( )x (1) W( ) DHM( ) models subsampling, blur, and subpixel motion is additive noise models a rigid transformation (3 degrees of freedom):! rotation angle ' and translation t (tu , tv )C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP7

Energy FunctionE (x, ) (yW( )x) B(yW( )x) R (x)(2) Weighted deviation between observation and model approximationC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP8

Energy FunctionE (x, ) yW( )x) B(yW( )x) R ( x) Weighted deviation between observation and model approximation Edge preserving WBTV3regularization given by:R(x) ASx 1 PPXXAl ,m Sl ,m xl P m P1 S models vertical and horizontal shifts around a local neighborhood P A are weights to control influence of the prior3Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP9

Non-Linear Least-Squares Estimation Our energy function is non linear w.r.t ! non-linear least-squares estimation of x and :E (x, ) 12B (ypW( )x)1 1A2 L2 x!22(3)where L is a majorization of the WBTV termC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP10

Numerical Optimizationx,SuperResolution SteptB t , AtµtUpdateWeights MapsFind DampingParameter t 1xt xtt t11 x, Iterative confidence-aware optimization scheme The Taylor series expansion of our energy function in (3) yields smallparameter updates according to: xht t (P ) Pi1(Pt ) ft(4) P, f derived based on the Jacobian matrixC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP11

Numerical Optimizationx,SuperResolution SteptB t , AtµtUpdateWeights MapsFind DampingParameter t 1xt xtt Compute small changesthe motion parameters x and x t11 x, for the high-resolution image x andht t (P ) Pi1(Pt ) ftC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP(5)12

Numerical Optimizationx, SuperResolution SteptB t , AtµtUpdateWeights MapsFind DampingParametert 1xt xtt t11 x, Compute small changes x and for the high-resolution image x andthe motion parameters using a Levenberg-Marquardt optimization: x ht tt t (P ) P µ · diag (P ) Pdamping parameter µ:i1(Pt ) ft(6)µ 0 ! Gauss-Newtonµ0 ! gradient descentC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP13

Numerical Optimizationx, SuperResolution SteptB t , AtµtUpdateWeights MapsFind DampingParametert 1xt xtt (a) Original(b) Data Weights Bt11 x, (c) Prior Weights AWeights are computed proportional to the inverse of the residual erros44Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP14

Numerical Optimizationx,SuperResolution SteptB t , AtµtUpdateWeights MapsFind DampingParameter t 1xt xtt t11 x, A good damping parameter µ is crucial for a good performance of theLevenberg-Marquardt iterations Perform an one-dimensional search to minimize the confidence weightedresidual error:tt12µ arg min (B ) [yµW ( (µ)) x(µ)]22,C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP(7)15

Gauss-Newton vs. Levenberg-MarquardtGauss-Newton under practical conditions (e.g affected by outliers):313130302929PSNR [dB]PSNR [dB] converges to a worse local minima converges slowly2827282726262525246810 12Iteration14161820246810 12Iteration14161820Left: Iterations without outliers. Right: Iterations in the presence of outliers due to invalid pixels.C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP16

Experiments and Results

Experimental SetupExperiments: Real datasets5 Simulated data with known ground truth6Compared methods: Joint Motion Estimation And Super-Resolution (JMSR)7 Iteratively Re-Weighted Minimization Super-Resolution (IRWSR)8 Proposed confidence-aware L.M. optimization5https://users.soe.ucsc.edu/ utexas.edu/research/quality/subjective.htm7Yu He et al., “A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution.,” IEEE TIP, 2007.8Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.6C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP18

Real Data: Emily Sequence(a) 2 original frames(b) JMSR Head movements generate outliers Presence of motion uncertainty(c) IRWSR(d) ProposedC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP19

Real Data: Alpaca Sequence(a) 2 original frames(b) JMSR(c) IRWSR(d) Proposed Alpaca movement generates outliers Presence of motion uncertaintyC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP20

Real Data: Results(e) Original(f) JMSR(g) IRWSR(h) Proposed Car drives away from the camera! cannot be modeled with a rigid transformation Our method is robust against mis-registered frames and refines motionestimate for the remaining framesC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP21

Simulated Data: ResultsSetup: LR altered with salt and pepper noise Results averaged over n 10 random test sequencesPSNR evaluation for sequenceswithout outliers (top row) andsequences with outliers due toinvalid pixels (bottom row):! Increased PSNR by 3 dB.C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP22

Simulated Data: Results(a) Original(b) JMSR(c) IRWSR(d) ProposedC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP23

Summary and Conclusion

Summary and Conclusion Combine robustness to outliers in the formation process with therefinement of the motion estimation Levenberg-Marquard iteration scheme to boost convergence Outperform both two-stage and joint state of the art approaches.Outlook: Extend the model to more general types of motion:! e.g.: affine transformationsMATLAB code of this method is available on our webpage as part of oursuper-resolution me-super-resolution-toolboxC. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP25

Thank you very much for your attention!

C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP 8. Energy Function. E(x, ) y W( )x) B(y W( )x) R(x) Weighted deviation between observation and model approximation. Edge preserving WBTV3regularization given by: R(x) ASx . 1 .