Supporting Material - Royal Society Of Chemistry

Transcription

Electronic Supplementary Material (ESI) for RSC Advances.This journal is The Royal Society of Chemistry 2022Construction of Sulfur-containing N-Vinylimides: N-Addition ofImides with Propargyl Sulfonium SaltsShou-Jie Shen,*,a Le-Mei Wang,a Guo-Mei Gong,a Yan-Jiao Wang,a Jin-Yan Liang*,band Jun-Wen Wang*,a† Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School ofChemical and Material Science, Shanxi Normal University, Linfen, 041004, China‡College of Life Science, Shanxi Normal University, Linfen, 041004, ChinaEmail: shoujie shen@outlook.com, jinyan liang@outlook.com, wangjunwen2013@126.comSupporting MaterialA. General Information . .S2B. Effect of Parameters . . .S3C. NMR Spectra . . . S4-S321

A.General InformationGeneral Procedures.All reactions were performed in oven-dried or flame-driedround-bottom flasks and vials.Stainless steel syringes and cannula were used totransfer air- and moisture-sensitive liquids.Flash chromatography was performedusing silica gel 60 (230 400 mesh) from Aladdin.Materials.Commercial reagents were purchased from TCI, Aladdin and J&K andused as received. All solvents were used after being freshly distilled unless otherwisenoted. Analytical thin layer chromatography (TLC) was performed on percolatedglass backed plates (silica gel 60 F254; 0.25 mm thickness). The TLC plates werevisualized by UV illumination and by staining.Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra and carbonnuclear magnetic resonance (13C NMR) spectra were recorded on BrukerUltraShield 600 (600 MHz).Chemical shifts for protons are reported in parts permillion downfield from tetramethylsilane and are referenced to the NMR solventresidual peak (CHCl3 δ 7.26).Chemical shifts for carbons are reported in parts permillion downfield from tetramethylsilane and are referenced to the carbon resonancesof the NMR solvent (CDCl3 δ 77.0).Data are represented as follows: chemical shift,multiplicity (br broad, s singlet, d doublet, t triplet, q quartet, m multiplet), coupling constants in Hertz (Hz), and integration.The massspectroscopic data were obtained using a Micromass Platform II single quadrupoleinstrument.Infrared (IR) spectra were obtained as thin films on KBr plates bydissolving the compound in CH2Cl2 followed by evaporation. Data are represented asfollows: frequency of absorption (cm-1) and absorption strength (s strong, m medium, w weak).Abbreviations Used: THF–tetrahydrofuran, TEA–triethylamine, ′-Dimethylformamide,chromatography, DCE 1,2-dichloroethane, EtOAc–ethyl acetate.2TLC–thinlayer

B. Effect of ParametersONH SMe2BrNaOAc 3H2O (1.5 equiv)r.t. for 10 minthen 50 oC for 6 hCH3CN, c 0.1 MNSMeOO1aO2a3aGeneral Procedure : To a flame-dried sealable 3-dram vial equipped with a stir barwas added imides 1a (0.3 mmol, 1.0 equiv), NaOAc·3H2O (0.45 mmol, 1.5 equiv),subsequently treated CH3CN (3.0 mL, c 0.1 M) was added to vial via syringe, thereaction mixture was stirred for 10 min at 22 C. Then propargyl sulfonium salt 2a(0.45 mmol, 1.5 equiv) was added in one portion. The reaction was stirred at 50 Cfor 6 h until imide 1a was fully consumed (monitored by TLC). The organic solventwas removed under reduced pressure and purified through column chromatography(eluent: petroleum ether and EtOAc) to afford the desired product 3a.We probed theinfluence of the ratio of reactants and reaction temperature(Table 1).Table 1. Optimization of the Reaction ConditionsEntryBaseSolvent1a:2a:baseTemp ( )Yield(%)1NaOAc·3H2OCH3CN1: 1.3: 2.550482NaOAc·3H2OCH3CN1: 1.5: 2.550573NaOAc·3H2OCH3CN1: 1.5: 1.550714NaOAc·3H2OCH3CN1: 1.5: 2.050495NaOAc·3H2OCH3CN1: 2.0: 1.550613

20C. NMR SpectraO45000NSMeO3aCDCl3, 600 54.0f1 00O1800017000NSMe16000O3aCDCl3, 150 10090f1 (ppm)480706050403020100

ClSMeO3bCDCl3, 600 j-11.2-3-88-2-L-CONClSMeO3bCDCl3, 150 MHzCl17016015014013012011010090580706050403020100 ppm

7.7407.260ssj-10.31-4-L-87-HONSMeO3cCDCl3, 600 MHz7.06.56.05.55.04.54.03.53.02.52.01.51.00.50.0 1-4-L-87-CONBrSMeO3cCDCl3, 150 MHz1701601501401301201101006908070605040302010ppm

170O -HONO3dCDCl3, 600 MHzSMeONO3dCDCl3, 150 MHzSMe1.51.030200.5100.0 ppm0 ppm

7.960ssj-10.30-7-L-86-HNO2 ONSMeO3eCDCl3, 600 -CNO2 ONSMeO3eCDCl3, 150 MHz17016015014013012011010090880706050403020100 ppm

7.7877.774ssj-20201114-10-L-8shang-HONSMeO3fCDCl3, 600 -10-L-108shang-CONSMeO3fCDCl3, 150 MHz1701601501401301201101009098070605040100 ppm

eO3gCDCl3, 600 g--CONSMeO3gCDCl3, 150 0ppm

ssj-20201126-1-L-115-HONSMeO3hCDCl3, 600 00.50.0 ppm100 4-L-115-CONNSMeO3hCDCl3, 150 MHz170160150140130120901180706050403020

-HONSMeO3iCDCl3, 600 MHz5.55.04.54.03.53.02.52.060501.51.00.50.0 01218-3-164-1-CONSMeO3iCDCl3, 150 MHz17016015014013012011010012908070403020100 ppm

-HONSMeO3jCDCl3, 600 1-CONSMeO3jCDCl3, 150 0 ppm

4-5-179--HMe ONSMeO3kCDCl3, 600 MHz0.010ppmssj-20201224-5-179--CMe ONSMeO3kCDCl3, 150 MHz0ppm

5ssj-11.4-1-L-91-1-H2.01.5ONSMeO3lCDCl3, 600 MHz5.04.54.02.51.00.50.0 , 150 0 ppm

mCDCl3, 600 MHz3.53.02.52.01.51.00.50.0 O3mCDCl3, 150 0100ppm

ssj-20201124-L-2-112-HONSMeO3nCDCl3, 600 9176.576ssj-20201124-L-8-112-CONSMeO3nCDCl3, 150 0 ppm

01229-1-190-HONOSMe3oCDCl3, 600 MHz1.51.0300.5200.0 ppmssj-20201229-1-190-CONOSMe3oCDCl3, 150 MHz100 ppm

eO3pCDCl3, 600 114--L-98-CONSMeO3pCDCl3, 150 0 ppm

CDCl3, 600 MHz0.50.0 ppmPrONSMeO3qCDCl3, 150 MHz100 ppm

L-113-HOMeNMeSMeO3rCDCl3, 600 -20201118-5-L-113-COMeNMeSMeO3rCDCl3, 150 0 ppm

23-12-173-HH ONOSMeH O3sCDCl3, 600 MHz5.04.54.03.53.02.52.01.51.00.50.0 03134.216175.044ssj-20201223-14-173-CH ONOSMeH O3sCDCl3, 150 0 ppm

5.3815.3595.0586.5147.284ssj-20201218-4-164-2-HH ONOSMeH O3tCDCl3, 600 .056.0117.3126.52.041.057.02.017.5H ONOSMeH O3tCDCl3, 150 MHz18017016015014013012023908070605040100 ppm

NOSMe5aCDCl3, 600 MHz5.55.04.51101004.03.53.02.52.01.51.00.50.0 201223-11-170-2--COOSCH3PhNOSMe5aCDCl3, 150 MHz180170160150130249080706050403020100 ppm

180170160150O O O MeSNPhSMe5bCDCl3, 150 ng--HO O O MeSNPhSMe5bCDCl3, 600 MHz1.00.5200.0 ppmssj-20201210-13-143zhong--C100 ppm

7.936ssj-20201118-2-L-116shang-HO O OSMeNSMeMe5cCDCl3, 600 MHz5.55.04.54.03.53.02.52.01.51.00.50.0 ppm100 ssj-20201119-11-L-116shang-CO O OSMeNSMeMe5cCDCl3, 150 MHz180170160150140110100269080706050403020

180Me170O O OSN160150SMeMe5dCDCl3, 150 8.0120.517Me129.331129.0548.52.032.03O O -160shang-HSMeMe5dCDCl3, 600 MHz1.0200.5100.0 ppmssj-20201217-8-160shang-H0 ppm

Me1801701601506.56.01.017.0O O O MeSNSMe5eCDCl3, 150 HO O O MeSNSMe5eCDCl3, 600 MHz1.00.5200.010ppm0 ppm

7.7767.7717.284ssj-11.2-1-L-tangjing-HONSO OSMe7CDCl3, 600 5.02134.42133.53157.971.001.015.51.00.50.0 121.09117.198.01.992.048.59500O9000NSO OSMe850080007CDCl3, 150 f1 (ppm)80706050403020100

-HOOSMeO O9CDCl3, 600 MHz0.50.010ppmOOSMeO O9CDCl3, 150 MHz0 ppm

HOOSMeO O11CDCl3, 600 MHz0.5100.0 ppmOOSMeO O11CDCl3, 150 MHz0 ppm

7.284ssj-20201228-6-192--HOMeSOONO12CDCl3, 600 MHz6.56.05.55.04.54.03.53.02.52.01.51.00.50.0 .774166.691ssj-20201228-9-192--COMeSOONO12CDCl3, 150 0 ppm

3 B. Effect of Parameters N O O SMe SMe 2 Br 1a 2a 3a CH 3 CN , c 0.1 M NaOAc 3 H 2 O (1.5 equiv) r.t. for 10 min then 50 o C for 6 h NH O O General Procedure : To a flame-dried sealable 3-dram vial equipped with a stir bar was added imides 1a (0.3 mmol, 1.0 equiv), NaOAc·3H2O (0.45 mmol, 1.5 equiv), subsequently treated CH3CN (3.0 mL, c 0.1 M) was added to vial via syringe, the