1. Introduction Fun Timely Intellectual Adorable!

Transcription

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryFun Timely Intellectual Adorable!Spin attice QCDWeakinteractionnucleartargetNuSTEC NewsNucleoncorrelationEMC effectelectronscatteringDarkmatterSubscribe “NuSTEC News”E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"(or just send e-mail to me, katori@FNAL.GOV)like “@nuxsec” on Facebook page, use hashtag #nuxsecTeppei Katori, Queen Mary University of London2017/06/251

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.07770Highlights from NuSTEC-News nooscillationNucleoncorrelationSpin physicsLattice QCD1.2. CCQE, CCQE-like, and CC0p dataWeak3. CC data with nucleonfinal statenuclearinteraction4. Electron neutrino CCtargetdata5. A-dependenceof neutrinocross sectionNuSTECNews6. Pion puzzle7. ConclusionTeppeiKatorielectronDarkQueen Mary scatteringUniversity of LondonmatterNuInt 17, The Fields Institute, Toronto, Canada, June 25, 2017EMC effectSubscribe “NuSTEC News”E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"(or just send e-mail to me, katori@FNAL.GOV)like “@nuxsec” on Facebook page, use hashtag #nuxsecTeppei Katori, Queen Mary University of London2017/06/252

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/253

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary1. IntroductionThe “NuSTEC News” (2012 - ) is the community newsletter about neutrinointeraction physics. It discusses the latest interesting neutrino cross result, eitherexperimental or theoretical, roughly every other week. This is the place for all of usto learn neutrino interaction physics together.http://nustec.fnal.gov/nustec-news/Please subscribe today!We also have a Facebook page (“NuSTEC News” or @nuxsec, please “like” now!)Please use Hashtag #nuxsec for any news about neutrino interaction physics(Teppei’s live tweet for Fermilab seminars)Subscribe “NuSTEC News”E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"(or just send e-mail to me, katori@FNAL.GOV)like “@nuxsec” on Facebook page, use hashtag #nuxsecTeppei Katori, Queen Mary University of London2017/06/254

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/255

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. CC0p dataFinal state particle topology dependent definition is widely used.CC0p data à 1 muon 0 pion N nucleonµ1nnµnpion productionin nucleipion absorptionin nuclei7n6nnppnpion absorptionin detector mediap5µµnnpion production43µnngenuine CCQEn2ppµnpmulti-nucleoninteractionµ?any other kindof interactionsTeppei Katori, Queen Mary University of LondonGenuine CCQE (1)CCQE-like (1), (6), (7)CC0p (1), (4), (6), (7)2017/06/256

PDG2014 Section 49 “Neutrino Cross-Section Measurements”1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. Flux-integrated differential cross-sectionVarious type of flux-integrated differential cross-section data are available fromall modern neutrino experiments.à Now PDG has a summary of neutrino cross-section data! (since 2012)T2KArgoNeuTMiniBooNEMINERvATeppei Katori, Queen Mary University of London2017/06/257

PDG2014 Section 49 “Neutrino Cross-Section Measurements”1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. Flux-integrated differential cross-sectionVarious type of flux-integrated differential cross-section data are available fromall modern neutrino experiments.à Now PDG has a summary of neutrino cross-section data! (since 2012)TheoristsExperimentalistsFlux-integrated differential cross-section data allow theorists and experimentalists to talkTeppei Katori, Queen Mary University of London2017/06/258

PDG2014 Section 49 “Neutrino Cross-Section Measurements”1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. Flux-integrated differential cross-sectionVarious type of flux-integrated differential cross-section data are available fromall modern neutrino experiments.à Now PDG has a summary of neutrino cross-section data! (since 2012)ExperimentalistsTheoristsFlux-integrated differential cross-section data allow theorists and experimentalists to talkTeppei Katori, Queen Mary University of London2017/06/259

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryMartini, NuInt20142. CCQE-like data, MiniBooNE (2014)SuSAv2 shows lower normalizationdue to lack of axial currentenhancement.nTeppei Katori, Queen Mary University of London2017/06/2510

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryMegias et al.,PRD94(2016)0930042. CCQE-like data, MiniBooNE (now)SuSAv2 shows lower normalizationdue to lack of axial currentenhancement.After adding axial MEC contribution,SuSA collaboration (Megias et al.)shows similar enhancement with othergroups (Martini et.al., Nieves et al.,Meucci et al., Mosel et al., Bodek etal.).All groups agree qualitatively withMiniBooNE CCQE-like doubledifferential data.nTeppei Katori, Queen Mary University of London2017/06/2511

Martini and Ericson,PRC90(2014)025501,Gallmeister et al.,PRC94(2016)035502,Megias et al.,PRD94(2016)0930042. CC inclusive data, T2K (now)SuSAv2 shows lower normalizationdue to lack of axial currentenhancement.1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryAfter adding axial MEC contribution,SuSA collaboration (Megias et al.)shows similar enhancement with othergroups (Martini et.al., Nieves et al.,Meucci et al., Mosel et al., Bodek etal.).All groups agree qualitatively withMiniBooNE CCQE-like doubledifferential data.These models are also successful toreproduce T2K CC inclusive data (BNBflux cannot explain MiniBooNE datanormalization)Teppei Katori, Queen Mary University of London2017/06/2512

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. CCQE-like data, MINERvA (2014)On the other hand, models work forMiniBooNE overestimate MINERvAcross sections.nnTeppei Katori, Queen Mary University of London2017/06/2513

MINERvA,PRD93(2016)0920051. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. CCQE-like data, MINERvA (now)On the other hand, models work forMiniBooNE overestimate MINERvAcross sections.MINERvA found NuMI flux wasoverestimated. With new fluxcalculation, normalization tensionbetween MiniBooNE and MINERvA isreducednTeppei Katori, Queen Mary University of Londonn2017/06/2514

120071. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary2. CCQE-like data, MINERvA (now)On the other hand, models work forMiniBooNE overestimate MINERvAcross sections.MINERvA found NuMI flux wasoverestimated. With new fluxcalculation, normalization tensionbetween MiniBooNE and MINERvA isreducedn-e scattering data constrained flux predictionNew flux results are independently testedby n-e scattering data and low-n method.low-n method data vs old flux prediction𝜈" in n-mode𝜈̅" in 𝜈̅ -mode𝜈" in𝜈̅ -mode𝜈̅" inn-modeTeppei Katori, Queen Mary University of London2017/06/2515

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryWikinson et al.,PRD93(2016)0720102. CCQE-like data, global fit tension (now)MiniBooNE and MINERvA data show strong tensions. The origin of tension includes;1. Lack of full covariance matrix from MiniBooNE data2. Lack of systematic errors from theoretical models3. Validity of models at MiniBooNE, T2K, and MINERvA kinematicsNew models are qualitatively right idea, but they don’t pass a quantitative testMiniBooNE-MINERvA CCQE-like data simultaneous fitTeppei Katori, Queen Mary University of London2017/06/2516

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryT2K,PRD93(2016)1120122. CC0p double differential data, T2K (now)T2K publish CC0p double differentialcross section. This took into accountmany issues on MiniBooNE data set1. clearly state what was measured2. full covariance matrix for precise fitStudy of lepton kinematicsis not completed, yet.Teppei Katori, Queen Mary University of London2017/06/2517

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCarlson et al., PRC65(2002)024002Lovato et al.,PRL112(2014)1825022. Ab initio calculation (2014)Ab initio calculation support the general idea of transverse response enhancementfor neutrino scatterings.4HeEuclidian transverse responseTransverse sum rule for NC interactionTeppei Katori, Queen Mary U of London16/12/0818

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryLovato et al.,PRL112(2014)182502;PRC91(2015)0625012. Ab initio calculation (now)Ab initio calculation support the general idea of transverse response enhancementfor neutrino scatterings.Ab initio calculation for weak interaction response function shows same featureswith phenomenological models.Next step: ab initio calculation for oxygen and argonNC Euclidean transverse response functionby ab initio calculation (q 570 MeV)NCQE-like cross section transverseresponse contribution by Martini et al.Teppei Katori, Queen Mary U of London16/12/0819

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryBhattacharya et al.,PRD92(2015)113011, Mayer et al.,PRD93(2016)113015Alexandrou et al, arXiv:1705.03399, Amaro and Arriola,PRD93(2016)1130152. More thoughts on nucleon parameters (now)There are number of new thoughts on nucleon parametersZ-expansion: Form factor errors are underestimatedLattice QCD: axial mass could be largerLarge MA: could be motivated from theoriesJury is still out?!We often say “n-A” scatteringis complicated, but the realityis we are also confusedabout “n-N” scattering Axial vector form factor comparisonLattice QCD (twisted mss)MA 1.3 GeVNuInt15 (Osaka)Z-expansionTeppei Katori, Queen Mary U of London16/12/0820

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCoffee BreakTeppei Katori, Queen Mary University of London2017/06/2521

e mention: Other MINERvA results (now)Kaon bombsnµCC K productionDiffractive pion productionn(𝜈̅ )NC K production1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummarynµCC coherent K productionDIS 𝜈̅ /𝜈 ratioTeppei Katori, Queen Mary University of London2017/06/2522

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/2523

K2K,PRD74(2006)052002 (2006), NOMAD,EPJC63(2009)355SciBooNE,arXiv:0909.56471. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. CC data with nucleon final state (2006)Tensions between 1 track (µ) and 2 track (µ p) are known, but experimentalists tried tounderstand that within their simulations.SciBooNE 1 and 2 track Q2 distributionTeppei Katori, Queen Mary University of London2017/06/2524

T2K,PRD91(2015)1120023. 1&2 track genuine CCQE total cross section, T2K (now)1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryT2K measured CCQE total cross section from 1 track (µ) and 2 track (µ p) sampleseparately (model-dependent). 1 track cross sections are consistently higher than 2track cross section.à 2p2h contribution is contaminated in 1 track.Unfortunately, after including 2p2h in analysis ( 2p2h contribution becomesbackground and removed) 1 trach cross section is still higher than 2 track crosssection.Teppei Katori, Queen Mary University of London2017/06/2525

MINERvA,PRD91(2015)0713011. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. CC0pNp data, MINERvA (now)MINERvA measured µ p sample differential cross section, more precisely “finalstate include a muon, at least one proton, and no pions”. Q2 is reconstructed frommuon kinematics and proton kinematics, and they agree.1. normalization agrees with old flux.2. background subtraction is complicated.*𝐸'(,"𝑀𝐸" 0.5𝑚"2 𝑀 𝐸" 𝑝" 𝑐𝑜𝑠𝜃*2𝑄'(," 𝑚"2 2𝐸'(,"(𝐸" 𝐸"2 𝑚"2 𝑐𝑜𝑠𝜃" )µnncosqµ(assumingnucleontarget at rest)2𝑄'(, 2𝑀(𝐸 𝑀)EµpEpTeppei Katori, Queen Mary University of London2017/06/2526

MINERvA,PRL116(2016)0718023. ds/dEavail data, MINERvA (now)MINERvA reconstruct full inclusive kinematics (once we thought impossible!)1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summaryavailable energy(visible hadron energy deposit) energy transfer 3-momentum transferDouble differential distribution shows“dip” structure in MC, but not in dataExcess of data around the dip region isvery large.Teppei Katori, Queen Mary University of London2017/06/2527

Fermilab 15ft,PRD18(1978)13671. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. Backward going proton (1978)Special topology of nucleons from neutrino interactions are studied at Fermilab 15ftbubble chamber, but the subject was forgotten in neutrino physics Teppei Katori, Queen Mary University of London2017/06/2528

ArgoNeuT,PRD90(2014)0120081. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. Hammer events, ArgoNeuT (2014)ArgoNeuT published so called “hammer” events.à candidate topology of NNSRC from nµ (np)ൠp pTeppei Katori, Queen Mary University of London2017/06/2529

ArgoNeuT,PRD90(2014)012008Niewczas and Sobczyk,PRC93(2016)035503,Weinstein et al.,PRC94(2016)0455011. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. Interpretation of Hammer events (now)ArgoNeuT published so called “hammer” events.à candidate topology of NNSRC from nµ (np)ൠp pOther reactions contribute comparableamount on this topology To study more detail, detection efficiencyneed to be understood.Teppei Katori, Queen Mary University of London2017/06/2530

NOvA,Neutrino20161. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. Nucleon kinematics predictions (2015)So far, all generators are based on “nucleon cluster model”- isotropic decay in hadronic frame- fixed ratio for n-p, p-p, n-n pairsAlthough it is too naïve model, but it may not be too wrongNOvA reduce energy scalemismatch from 5 to 2% by2p2h MEC (Nieves etal.) nucleon cluster modelTeppei Katori, Queen Mary University of London2017/06/2531

Van Chuyk et al.,PRC94(2016)024611Ruiz Simo et al.,PLB762(2016)1241. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary3. Nucleon kinematics predictions (now)So far, all generators are based on “nucleon cluster model”- isotropic decay in hadronic frame- fixed ratio for n-p, p-p, n-n pairsNumber of groups made detailed predictions of hadron final statesà Question, how to use them in experiments?n-p and p-p 12C response functionproton in-plane kinematics from 2p2h(En 750MeV, Eµ 550MeV, qµ 15o, Tp 50MeV)Teppei Katori, Queen Mary University of London2017/06/2532

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/2533

Gargamelle,NPB133(1978)2054. neCC data (1978)No neCC data in low energy region. This was a main argument for neutrinofactory (including nuSTORM).1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summaryne to nµ cross section ratio is an important systematics, but it is often optimistic.Teppei Katori, Queen Mary University of London2017/06/2534

T2K,PRL113(2014)241803;PRD91(2015)112010Martini et al.,PRC94(2016)015501,Gallmeister et al.,PRC94(2016)035502,Megias et al.,PRD94(2016)0930044. neCC inclusive data, T2K (now)T2K measured neCC inclusive crosssection, and models alreadyreproduced them!Teppei Katori, Queen Mary University of London2017/06/251. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary35

MINERvA,PRL116(2016)0818021. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary4. neCCQE-like data, MINERvA (now)T2K measured neCC inclusive crosssection, and models alreadyreproduced them!MINERvA measured neCCQE-likeSummary: we have many neCC data from zero, but precision ( statistics) is muchworse than nµCC data.Teppei Katori, Queen Mary University of London2017/06/2536

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/2537

CTEQ,PRD93(2016)0940041. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary5. Target dependent results (2015)Nuclear PDFs for neutrinosCCQE from ironTeppei Katori, Queen Mary University of London2017/06/2538

MINERvA,PRD93(2016)071101,arXiv:1705.037911. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary5. Target dependent results (now)DIS target ratio cross section CC0pNp A-dependent cross section- nuclear shadowing may be - proton feels more FSI in larger Astronger than simulationModern neutrino experimentsneed characterizations of allelements with all energyNeutrinobeamn-Fen-Pbn-Sin-AlTeppei Katori, Queen Mary University of London2017/06/25neutrino detector39

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCoffee BreakTeppei Katori, Queen Mary University of London2017/06/2540

. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryHonorable mention: T2K water target results (now)CC1p production differential cross sectionneCC rate measurementCC inclusive 𝜈̅ /𝜈 ratioNCpo production rateP0DProblem: If the target materialis inactive ( water layer),systematic errors are inflatedduring active materialsubtraction processTeppei Katori, Queen Mary University of LondonFGD22017/06/2541

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/2542

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction6. Open question of neutrino interaction physics (2012)CCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalization2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?Coherent pion- Is there charged current coherent pion production?ANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion dataPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsBaryon resonance, pion production by neutrinosTeppei Katori, Queen Mary University of London2017/06/2543

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction6. Open question of neutrino interaction physics (now)CCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCoherent pion- Is there charged current coherent pion production?ANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion dataPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2544

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction6. Open question of neutrino interaction physics (now)CCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetradiative D-decayCoherent pionn- Is there charged current coherent pion production?Z DNANL-BNL puzzle2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryngN- Normalization difference between ANL and BNL bubble chamber pion dataPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2545

K2K,PRL95(2005)252301, SciBooNE, PRD78(2008)1120046. Open question of neutrino interaction physics (2008)CCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetCoherent pion- Is there charged current coherent pion production?1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion dataPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2546

1. IntroductionK2K,PRL95(2005)252301, SciBooNE, PRD78(2008)1120042. 720066. Open question of neutrino interaction physics (now)CCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetCoherent pion- Is there charged current coherent pion production?à yes, data from T2K, MINERvA, ArgoNeuT, MINOSANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion data3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2547

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction6. Open question of neutrino interaction physics (1980s)CCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetCoherent pion- Is there charged current coherent pion production?à yes, data from T2K, MINERvA, ArgoNeuT, MINOSANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion data2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2548

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction2. CC0pWilkinson et al,PRD90(2014)112017,Graczyk et al,PRD80(2009)093001,Wu et al,PRC91(2015)0352036. Open question of neutrino interaction physics (now)3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetCoherent pion- Is there charged current coherent pion production?à yes, data from T2K, MINERvA, ArgoNeuT, MINOSANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion dataà BNL data was wrong, but both might have wrong deuteron correctionPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2549

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction2. CC0pWilkinson et al,PRD90(2014)112017,Graczyk et al,PRD80(2009)093001,Wu et al,PRC91(2015)0352036. Open question of neutrino interaction physics (2014)3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetCoherent pion- Is there charged current coherent pion production?à yes, data from T2K, MINERvA, ArgoNeuT, MINOSANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion dataà BNL data was wrong, but both might have wrong deuteron correctionPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsTeppei Katori, Queen Mary University of London2017/06/2550

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al,AHEP(2012)934597, Garvey et al.,Phys.Rept.580 (2015)1 1. Introduction2. CC0pWilkinson et al,PRD90(2014)112017,Graczyk et al,PRD80(2009)093001,Wu et al,PRC91(2015)0352036. Open question of neutrino interaction physics (now)3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCCQE puzzle- Low Q2 suppression, high Q2 enhancement, high normalizationà presence of short and long range nucleon correlationsNCgamma- Can NCgamma explain MiniBooNE ne-candidate excess?à probably not, but no measurement, yetCoherent pion- Is there charged current coherent pion production?à yes, data from T2K, MINERvA, ArgoNeuT, MINOSANL-BNL puzzle- Normalization difference between ANL and BNL bubble chamber pion dataà BNL data was wrong, but both might have wrong deuteron correctionPion puzzle- MiniBooNE and MINERvA pion kinematic data are incompatible under any modelsà ?Teppei Katori, Queen Mary University of London2017/06/2551

MINERvA,PRD94(2016)052005Rodrigues et al.,EPJC76(2016)4741. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. Summary6. Pion puzzle (now)MINERvA nµCC1p vs. 𝜈" CC1po- this moment, there is no clear way to tune MC nµCC1p data hasbetter shapeagreement with GENIEanti-nµCC1po data hasbetter normalizationagreement with GENIETeppei Katori, Queen Mary University of London2017/06/2552

T2K, 035205;95(2017)0452036. Pion puzzle (now)T2K pion data from water target- Large error for inactive targetMINOS nµNCpo on iron- A-scaling of coherent pion production1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryArgoNeuT nµ(𝜈" )NCpo on argon- po reconstruction from g opening angleDUET FSI study for p in carbon- sABS and sCEX are measuredAny datafrom LArIAT?Teppei Katori, Queen Mary University of London2017/06/2553

MINERvA,PRD93(2016)071101,Nakamura et al,PRD92(2015)074024AGKY, EPJC63(2009)1,TK and Mandalia, arXiv:1602.000836. Multi-pion production and beyond (now)Shallow Inelastic Scattering- Very small activities to improve DIS and hadronization models in generators1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryGENIE DIS-hadronization landscapeeventsDCC model- all channels are coupled- 2 pion production4000KNORES3000à Question, how to use thismodel in elastic2000ResonanceDIS15001000500001234567NEUT DIS-hadronization landscape89Christophe Bronner (IPMU)RES DISKNO PYTHIA5Teppei Katori, Queen Mary University of London2017/06/2510W2 (GeV2/c4)54

MINERvA,PRD93(2016)071101,Nakamura et al,PRD92(2015)074024AGKY, EPJC63(2009)1,TK and Mandalia, arXiv:1602.000836. Multi-pion production and beyond (now)Shallow Inelastic Scattering- Very small activities to improve DIS and hadronization models in generatorsDCC model- all channels are coupled- 2 pion production1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryCurrent and future beams- DUNE, QE:RES:DIS 1:1:1- MINERvA may be only place to study SIS/DIS?à Question, how to use thismodel in experiments?Teppei Katori, Queen Mary University of London2017/06/2555

1. Introduction2. CC0p3. Nucleon4. ne vs. nµ5. A-dep xs6. Pions7. SummaryTK, Martini, arXiv:1611.077701. Introduction2. CCQE, CCQE-like, and CC0p data3. CC data with nucleon final state4. Electron neutrino CC data5. A-dependence of neutrino cross section6. Pion puzzle7. ConclusionTeppei Katori, Queen Mary University of London2017/06/2556

1. Introduction2. CC0p3. NucleonE-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstnamelastname"4. ne vs. nµ5. A-dep xs6. Pions7. SummarySubscribe “NuSTEC News”7. Conclusion(or just send e-mail to me, katori@FNAL.GOV)like “@nuxsec” on Facebook page, use hashtag #nuxsecThere are many major developmentsLepton kinematics study is not completed. We need a precise quantitative datatheory comparison. For this we need; covari

EMC effect Weak interaction Neutrino oscillation 2017/06/25 2 Spin physics Dark matter Lattice QCD Teppei Katori, Queen Mary University of London nuclear many-body problem Nucleon correlation electron scattering NuSTEC News Subscribe “NuSTEC News” E-mail to listserv@fnal.gov, Leav