Olympiad Mathematics By Tanujit Chakraborty

Transcription

OLYMPIAD MATHEMATICS BY TANUJIT CHAKRABORTYMATHEMATICSPROBLEMS WITHSOLUTIONSAlgebraProblem set1. If ๐’‚๐Ÿ ๐’‚๐Ÿ ๐’‚๐Ÿ‘ ๐’‚๐’ ๐Ÿ, ๐’‚๐’Š ๐Ÿ0 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐’‚๐’Š show that ๐’๐’Š ๐Ÿ ๐’‚ ๐’๐Ÿ .๐’Š๐’๐’๐’ˆ๐Ÿ’ ๐’› ๐’๐’๐’ˆ๐Ÿ๐Ÿ” ๐’™ ๐’๐’๐’ˆ๐Ÿ๐Ÿ” ๐’š ๐Ÿ9. Prove that the polynomial๐’‡(๐’™) ๐’™๐Ÿ’ ๐Ÿ๐Ÿ”๐’™๐Ÿ‘ ๐Ÿ“๐Ÿ๐’™๐Ÿ ๐Ÿ•๐Ÿ–๐’™ ๐Ÿ๐Ÿ—๐Ÿ–๐Ÿ—cannot be expressed as a product of twopolynomials p(x) and q(x) with integralcoefficients of degree less than 4.10. Find all positive integers x, y, z satisfying๐’›๐’™๐’š๐’™๐’š . ๐’š๐’› . ๐’›๐’™ ๐Ÿ“๐’™๐’š๐’›2. If ๐’‚๐Ÿ , ๐’‚๐Ÿ , . , ๐’‚๐’ are all positive, then11. Show that the set of polynomials ๐’‚๐Ÿ ๐’‚๐Ÿ ๐’‚๐Ÿ ๐’‚๐Ÿ‘ ๐’‚๐Ÿ ๐’‚๐’ ๐’‚๐Ÿ ๐’‚๐Ÿ‘ ๐’‚๐Ÿ ๐’‚๐Ÿ’ ๐’‚๐Ÿ ๐’‚๐’ ๐’‚๐’ ๐Ÿ ๐’‚๐Ÿ ๐‘ท {๐’‘๐’Œ ๐’‘๐’Œ (๐’™) ๐’™๐Ÿ“๐’Œ ๐Ÿ’ ๐’™๐Ÿ‘ ๐’™๐Ÿ ๐’™ ๐Ÿ. ๐’Œ๐๐‘ต} ๐’‚๐’ ๐Ÿ ๐’‚๐Ÿ ๐’‚๐’ ๐Ÿ ๐’‚๐’ ๐Ÿ ๐’‚๐’ ๐Ÿ ๐’‚๐’ ๐’ ๐Ÿ(๐’‚๐Ÿ๐Ÿ ๐’‚๐Ÿ ๐’‚๐’ ).๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘3. If ๐’˜ ๐’™ ๐’š ๐’› ๐Ÿ๐ŸŽ, show that 4๐Ÿ‘๐’˜๐Ÿ’ ๐’™๐Ÿ’ ๐’š๐Ÿ’ ๐’›๐Ÿ’ ๐Ÿ๐Ÿ“๐ŸŽ๐ŸŽ.4. If x and y are real, solve the inequality๐’๐’๐’ˆ๐Ÿ ๐’™ ๐’๐’๐’ˆ๐’™ ๐Ÿ ๐Ÿ ๐œ๐จ๐ฌ ๐’š ๐ŸŽ5. Let P(x) ๐’™๐Ÿ ๐’‚๐’™ ๐’ƒ be a quadraticpolynomial in which a and b are integers.Show that there is an integer M such thatP(n). P(n 1) ๐‘ท(๐’) for any integer n.Has a common non trivial polynomial divisor.12. If f is a polynomial with integer coefficientssuch that there exists four distinct integer๐’‚๐Ÿ , ๐’‚๐Ÿ , ๐’‚๐Ÿ‘ , ๐’‚๐’๐’… ๐’‚๐Ÿ’ with ๐’‡(๐’‚๐Ÿ ) ๐’‡(๐’‚๐Ÿ ) ๐’‡(๐’‚๐Ÿ‘ ) ๐’‡(๐’‚๐Ÿ’ ) ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ, then show thatthere exists no integer b, such that f(b) 1993.13. Determine all the roots of the system ofsimultaneous equations x y z ๐Ÿ‘, ๐’™๐Ÿ ๐’š๐Ÿ ๐’›๐Ÿ ๐Ÿ‘ ๐’‚๐’๐’… ๐’™๐Ÿ‘ ๐’š๐Ÿ‘ ๐’›๐Ÿ‘ ๐Ÿ‘.14. Determine all pairs of positive integers (m,n) such that(๐Ÿ ๐’™๐’ ๐’™๐Ÿ๐’ ๐’™๐’Ž๐’ )๐’Š๐’” ๐’…๐’Š๐’—๐’Š๐’”๐’Š๐’ƒ๐’๐’† (๐Ÿ 6. Prove that the polynomial๐’™๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ— ๐’™๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– ๐’™๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ isdivisible by ๐’™๐Ÿ— ๐’™๐Ÿ– ๐’™๐Ÿ• ๐’™ ๐Ÿ.7. Find all integral solution of๐’™๐Ÿ‘ ๐Ÿ“๐’š๐Ÿ‘ ๐Ÿ๐Ÿ“๐’›๐Ÿ‘ ๐Ÿ๐Ÿ“๐’™๐’š๐’› ๐ŸŽ8. Solve :๐’๐’๐’ˆ๐Ÿ ๐’™ ๐’๐’๐’ˆ๐Ÿ’ ๐’š ๐’๐’๐’ˆ๐Ÿ’ ๐’› ๐Ÿ๐’๐’๐’ˆ๐Ÿ‘ ๐’š ๐’๐’๐’ˆ๐Ÿ— ๐’› ๐’๐’๐’ˆ๐Ÿ— ๐’™ ๐Ÿ๐’™ ๐’™๐Ÿ ๐’™๐’Ž ).15. Let x ๐’‘, ๐’š ๐’’, ๐’› ๐’“ ๐’‚๐’๐’… ๐’˜ ๐’” be theunique solutions of the system of linearequations๐’™ ๐’‚๐’Š ๐’š ๐’‚๐’Š ๐Ÿ ๐’› ๐’‚๐’Š ๐Ÿ‘ ๐’˜ ๐’‚๐’Š ๐Ÿ’ , ๐’Š ๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ’. Express the solution ofthe following system in terms of p, q, r ands;๐’™ ๐’‚๐’Š ๐Ÿ ๐’š ๐’‚๐’Š ๐Ÿ’ ๐’› ๐’‚๐’Š ๐Ÿ” ๐’˜ ๐’‚๐’Š ๐Ÿ– , ๐’Š ๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ’. (Assume the uniqueness of thesolution)

Olympiad Mathematics by Tanujit Chakraborty16. If P(x) is a polynomial of degree n such that๐‘ท(๐’™) ๐Ÿ๐’™ for x 1, 2, 3, .n 1, findP(x 2).17. What is the greatest integer, n for whichthere exists a simultaneous solution x tothe inequalities k ๐’™๐’Œ ๐‘˜ 1, ๐‘˜ 1,2,3, ๐‘›.18. Let f be a function on the positive integers,i.e.,22. Determine the largest number in the๐Ÿ‘๐Ÿ’infinite sequence; 1; ๐Ÿ, ๐Ÿ‘, ๐Ÿ’, . , ๐’ ๐’.23. If ๐’‚๐Ÿ ๐’‚๐Ÿ ๐’‚๐’ be real numberssuch that๐’‚๐Ÿ ๐’Œ ๐’‚๐Ÿ ๐’Œ ๐’‚๐’ ๐’Œ ๐ŸŽ for all integers k 0and๐’‘ ๐ฆ๐š๐ฑ[ ๐’‚๐Ÿ , ๐’‚๐Ÿ , , ๐’‚๐’ ], prove that๐’‘ ๐’‚๐Ÿ ๐’‚๐Ÿ and that (๐’™ ๐’‚๐Ÿ )(๐’™ ๐’‚๐Ÿ ) (๐’™ ๐’‚๐’ ) ๐’™๐’ ๐’‚๐Ÿ ๐’.๐’‡: ๐‘ต ๐’ with the following properties:(๐’‚)๐’‡(๐Ÿ) ๐Ÿ24. Let a 2 be given and define recursively(๐’ƒ)๐’‡(๐’Ž ๐’) ๐’‡(๐’)๐’‡(๐’Ž) for all positiveintegers m and n.๐’‚๐ŸŽ ๐Ÿ, ๐’‚๐Ÿ ๐’‚, ๐’‚๐’ ๐Ÿ ((๐’„)๐’‡(๐’Ž) ๐‘“(๐’)๐’‡๐’๐’“ ๐’Ž ๐‘›.Show that for all k ๐ ๐‘ต, we have๐’‚๐’ ๐Ÿ๐’‚๐’ ๐Ÿ ๐Ÿ ๐Ÿ) ๐’‚๐’ .๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’‚๐ŸŽ ๐’‚๐Ÿ ๐’‚๐Ÿ๐’‚๐’Œ๐Ÿ (๐Ÿ ๐’‚ ๐’‚๐Ÿ ๐Ÿ’)๐ŸFind f(1998).19. A leaf is torn from a paper back novel. Thesum of the remaining pages is 15,000.What are the page numbers of the tornleaf?20. Show that a positive integer n good ifthere are n integers, positive or negativeand not necessarily distinct, such that theirsum and product both equal to n.25. Let P(x) be a real polynomial function and๐‘ท(๐’™) ๐’‚๐’™๐Ÿ‘ ๐’ƒ๐’™๐Ÿ ๐’„๐’™ ๐’….Prove if P(x) ๐Ÿ for all x such that x ๐Ÿthen a b c d ๐Ÿ•.26. Let a, b, c be real numbers with 0 a, b, c 1 and a b c ๐Ÿ. Prove thatExample 8 is as good as ๐Ÿ’ ๐Ÿ ๐Ÿ. ๐Ÿ. ๐Ÿ. ๐Ÿ( ๐Ÿ). ( ๐Ÿ) ๐Ÿ’ ๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ ( ๐Ÿ) ( ๐Ÿ) ๐Ÿ–๐’‚๐’ƒ๐’„. ๐Ÿ–๐Ÿ ๐’‚ ๐Ÿ ๐’ƒ ๐Ÿ ๐’„Show that the integers of the form (4k 1)where k ๐ŸŽ ๐’‚๐’๐’… ๐Ÿ’๐’ (๐’ ๐Ÿ) are good.27. If ๐’‚๐ŸŽ , ๐’‚๐Ÿ , . ๐’‚๐Ÿ“๐ŸŽ are the coefficients of thepolynomial21. Show that for any triangle ABC, thefollowing inequality is true(๐Ÿ ๐’™ ๐’™๐Ÿ )๐Ÿ๐Ÿ“๐’‚๐Ÿ ๐’ƒ๐Ÿ ๐’„๐Ÿ ๐Ÿ‘ ๐ฆ๐š๐ฑ[ ๐’‚๐Ÿ ๐’ƒ๐Ÿ , ๐’ƒ๐Ÿ Prove that the sum ๐’‚๐ŸŽ , ๐’‚๐Ÿ ๐’‚๐Ÿ“๐ŸŽ is even.๐’„๐Ÿ , ๐’„๐Ÿ ๐’‚๐Ÿ ]28. Prove that the polynomialWhere a, b, c are the sides of the triangle inthe usual notation.๐’‡(๐’™) ๐’™๐Ÿ’ ๐Ÿ๐Ÿ”๐’™๐Ÿ‘ ๐Ÿ“๐Ÿ๐’™๐Ÿ ๐Ÿ•๐Ÿ–๐’™ ๐Ÿ๐Ÿ—๐Ÿ–๐Ÿ—2

Olympiad Mathematics by Tanujit ChakrabortyCannot be expressed as product f(x) ๐’‘(๐’™)๐’’(๐’™) where p(x), q(x) are bothpolynomials with integral coefficients and withdegree not more than 3.๐’‚๐Ÿ ๐Ÿ, ๐’‚๐Ÿ ๐Ÿ ๐’‚๐’๐’… ๐’‚๐’ ๐Ÿ ๐Ÿ๐’‚๐’ ๐Ÿ ๐’‚๐’ ๐Ÿ, ๐Ÿ.Prove that for any m, ๐’‚๐’Ž ๐’‚๐’Ž ๐Ÿ is also a term inthe sequence.29. Prove that๐Ÿ 35. Suppose a and b are two positive realnumbers such that the roots of the cubicequation ๐’™๐Ÿ‘ ๐’‚๐’™ ๐’ƒ ๐ŸŽ are all real. If ๐œถis a root of this cubic with minimalabsolute value prove that๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’ ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ๐Ÿ ๐Ÿ‘30. If x, y and z are three real numbers suchthat๐’ƒ๐Ÿ‘๐’ƒ ๐›ผ ๐’‚๐Ÿ๐’‚๐’™ ๐’š ๐’› ๐Ÿ’ ๐’‚๐’๐’… ๐’™๐Ÿ ๐’š๐Ÿ ๐’›๐Ÿ ๐Ÿ”36. Let a, b, c be three real numbers such that1 ๐’‚ ๐’ƒ ๐’„ ๐ŸŽ. Prove that if l is a rootof the cubic equation ๐’™๐Ÿ‘ ๐’‚๐’™๐Ÿ ๐’ƒ๐’™ ๐’„ ๐ŸŽ (real or complex), then ๐’ ๐Ÿ.Then show that each of x, y, z lie in the closedinterval [(2/3),2]. Can x attain the extremevalue 2/3 and 2?31. Let f(x) be a polynomial with integercoefficients. Suppose for five distinctintegers ๐’‚๐Ÿ , ๐’‚๐Ÿ , ๐’‚๐Ÿ‘ , ๐’‚๐Ÿ’ and ๐’‚๐Ÿ“ one hasf(๐’‚๐’Š ) ๐Ÿ ๐’‡๐’๐’“ ๐Ÿ ๐’Š ๐Ÿ“. Show that thereis no integer b such that f(b) ๐Ÿ—.32. Let f be a function defined on the set ofnon negative integers and taking value inthe same set. Suppose we are given that(๐’Š) ๐’™ ๐’‡(๐’™) ๐’™๐Ÿ๐Ÿ— [๐Ÿ๐Ÿ—] ๐’‡(๐’™)๐Ÿ—๐ŸŽ [ ๐Ÿ—๐ŸŽ ]Number Theory37. Show the square of an integer cannot be inthe form4n 3 or 4n 2, where n ๐๐‘ต.38. Show that ๐’ ๐Ÿ๐’Ž ๐Ÿ (๐Ÿ๐’Ž ๐Ÿ) is a perfectnumber, if (๐Ÿ๐’Ž ๐Ÿ) is a prime number.for allnon negative integers x.39. When the numbers 19779 and 17997 aredivided by a certain three digit number,they leave the same remainder. Find thislargest such divisor and the remainder.How many such divisors are there?40. Find the sum of all integers n, such that 1 ๐’ ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ– and that 60 divides ๐’๐Ÿ‘ ๐Ÿ‘๐ŸŽ๐’๐Ÿ ๐Ÿ๐ŸŽ๐ŸŽ๐’.(๐’Š๐’Š) ๐Ÿ๐Ÿ—๐ŸŽ๐ŸŽ ๐‘“(๐Ÿ๐Ÿ—๐ŸŽ๐ŸŽ) 2000Find all the possible values of f(1990). (Here [z]denotes the largest integer z; e.g., [3.145] ๐Ÿ‘).33. Solve for real x;๐Ÿ[๐’™]๐Ÿ๐Ÿ [๐Ÿ๐’™] {๐’™} ๐Ÿ‘, where[x] is the greatest integer less than orequal to x and {x} ๐’™ [๐’™]. [e.g., [3.4] 3 and {3.4} 0.4].34. Define a sequence โŒฉ๐’‚๐’ โŒช๐’ ๐Ÿ by41. Prove by induction : ๐Ÿ๐Ÿ‘ ๐Ÿ, ๐Ÿ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ“, ๐Ÿ‘๐Ÿ‘ ๐Ÿ• ๐Ÿ— ๐Ÿ๐Ÿ, ๐Ÿ’๐Ÿ‘ ๐Ÿ๐Ÿ‘ ๐Ÿ๐Ÿ“ ๐Ÿ๐Ÿ• ๐Ÿ๐Ÿ— etc.3

Olympiad Mathematics by Tanujit Chakraborty42. Prove by induction that if n ๐ŸŽ, then ๐Ÿ๐’ ๐’๐Ÿ‘ .Where the last factor has ๐Ÿ๐Ÿ• ๐Ÿ zeroesbetween the ones. Find the number of ones inthe product.43. In a sequence 1, 4, 10, .; ๐’•๐Ÿ ๐Ÿ, ๐’•๐Ÿ ๐Ÿ’, ๐’‚๐’๐’… ๐’•๐’ ๐Ÿ๐’•๐’ ๐Ÿ ๐Ÿ๐’•๐’ ๐Ÿ for n 3.53. Find the last two digits of (๐Ÿ“๐Ÿ”๐Ÿ•๐Ÿ–๐Ÿ—)๐Ÿ’๐Ÿ .Show by second principle of mathematicalinduction that54. Prove that ๐Ÿ.๐Ÿ’.๐Ÿ”.๐Ÿ– ๐Ÿ๐ŸŽ๐ŸŽ ๐Ÿ๐ŸŽ.๐Ÿ๐Ÿ.๐Ÿ‘.๐Ÿ“.๐Ÿ• ๐Ÿ—๐Ÿ—๐Ÿ55. Prove that ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ isdivisible by 7.56. Find all six digits numbers๐’‚๐Ÿ , ๐’‚๐Ÿ , ๐’‚๐Ÿ‘ , ๐’‚๐Ÿ’ , ๐’‚๐Ÿ“ , ๐’‚๐Ÿ” formed by using thedigits 1, 2, 3, 4, 5, 6 once each such thatthe number ๐’‚๐Ÿ , ๐’‚๐Ÿ , , ๐’‚๐’Œ is divisible by kfor 1 ๐’Œ ๐Ÿ”.๐’๐’•๐’ [(๐Ÿ ๐Ÿ‘) (๐Ÿ ๐Ÿ๐’ ๐Ÿ‘) ] ๐’‡๐’๐’“ ๐’‚๐’๐’ ๐’ ๐ ๐‘ต.44. Prove that for all natural numbers n,(๐Ÿ‘ ๐Ÿ“)๐’ (๐Ÿ‘ ๐Ÿ“)๐’ is divisible by ๐Ÿ๐’ .57. Find the number of all rational numbers45. A three digit number in base 11, whenexpressed in base 9, has its digits reversed.Find the number.46. If n and k are positive integers and k 1.Prove that๐’Ž๐’such that(i)0 ๐’Ž๐’ 1,(ii)m and n are relatively prime and(iii)๐’Ž. ๐’. ๐Ÿ๐Ÿ“!58. Find the remainder when ๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ is dividedby 9.๐’๐’ ๐Ÿ๐Ÿ๐’[ ] [] [ ]๐’Œ๐’Œ๐’Œ59. Let d be any positive integer not equal to2, 5 or 13. Show that one can find distincta, b in the set {2, 5, 13, d} such that ๐’‚๐’ƒ โ€“ ๐Ÿis not a square.60. Show that ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ• ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ• ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ”๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ•is divisible by 1997.47. How many zeroes does 6250! end with?48. If ๐’! has exactly 20 zeroes at the end, findn. How many such n are there?49. Prove that [x] [y] [x y], x [๐’™] {๐’™}and y [๐’š] {๐’š}, where both {x} and {y}are greater than or equal to 0.61. Prove that ๐’๐’๐’ˆ๐Ÿ‘ ๐Ÿ is irrational.62. Find all the ordered pairs of integers (x, z)such that ๐’™๐Ÿ‘ ๐’›๐Ÿ‘ ๐Ÿ•๐Ÿ๐Ÿ.50. Prove that [x] [2x] [4x] [8x] [16x] [32x] 12345 has no solution.51. Find all the integral solutions of ๐’š๐Ÿ ๐Ÿ ๐’™ ๐’™๐Ÿ .52. Find the product of63. Prove that for any natural number, n, E ๐Ÿ๐Ÿ—๐ŸŽ๐Ÿ‘๐’ ๐Ÿ–๐ŸŽ๐Ÿ‘๐’ ๐Ÿ’๐Ÿ”๐Ÿ’๐’ ๐Ÿ๐Ÿ”๐Ÿ๐’ isdivisible by 1897.64. Find all primes p for which the quotient(๐Ÿ๐’‘ ๐Ÿ ๐Ÿ) ๐’‘ is a square.๐Ÿ๐ŸŽ๐Ÿ ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ (๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ ๐ŸŽ๐Ÿ)65. ๐‘บ ๐Ÿ! ๐Ÿ! ๐Ÿ‘! ๐Ÿ’! ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ•! Findthe unit digit and tens digit of S.4

Olympiad Mathematics by Tanujit Chakraborty73. Show that F (๐‘ท๐Ÿ ๐’‚๐Ÿ ๐‘ท๐Ÿ ๐’‚๐Ÿ ) ๐‘ญ(๐‘ท๐Ÿ ๐’‚๐Ÿ ) ๐‘ญ(๐‘ท๐Ÿ ๐’‚๐Ÿ ).66. All two digit numbers from 10 to 99 arewritten consecutively, that is ๐‘ต 101112 99. Show that ๐Ÿ‘๐Ÿ ๐‘ต. From whichother two digit number you should start sothat N is divisible by (a) 3 (b) ๐Ÿ‘๐Ÿ .74. Prove that F(๐‘ท๐Ÿ ๐’‚๐Ÿ ) {๐’‡(๐‘ท๐Ÿ ๐’‚๐Ÿ )}๐Ÿ , where Fand f are as defined in problems 56 and 62.75. Sum of the cubes of the number of divisorsof the divisors of a given number is equalto square of their sum. For example if N 18.67. ๐‘ต ๐Ÿ๐’ ๐Ÿ (๐Ÿ๐’ ๐Ÿ)๐’‚๐’๐’… (๐Ÿ๐’ ๐Ÿ) is aprime number. 1 ๐’…๐Ÿ ๐’…๐Ÿ ๐’…๐’Œ ๐Ÿ๐Ÿ๐‘ต are the divisors of N. Show that ๐Ÿ ๐’… ๐Ÿ๐Ÿ๐’…๐Ÿ ๐Ÿ๐’…๐’ŒThe divisors of 18 are 1, 2, 3, 6, 9, 18 ๐Ÿ.No. of divisors of 18 are 1 2 2 4 3 668. N ๐‘ท๐Ÿ . ๐‘ท๐Ÿ . ๐‘ท๐Ÿ‘ and ๐‘ท๐Ÿ , ๐‘ท๐Ÿ ๐’‚๐’๐’… ๐‘ท๐Ÿ‘ aredistinct prime numbers. If ๐’…/๐‘ต ๐’… ๐Ÿ‘๐‘ต (orโ„•(๐‘ต) ๐Ÿ‘๐‘ต), show that ๐‘ต๐’Š ๐Ÿ๐Ÿ๐’…๐’ŠSum of the cubes of these divisors ๐Ÿ‘.๐Ÿ๐Ÿ‘ ๐Ÿ๐Ÿ‘ ๐Ÿ๐Ÿ‘ ๐Ÿ’๐Ÿ‘ ๐Ÿ‘๐Ÿ‘ ๐Ÿ”๐Ÿ‘ (๐Ÿ๐Ÿ‘ ๐Ÿ๐Ÿ‘ ๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ‘ ) ๐Ÿ๐Ÿ‘ ๐Ÿ”๐Ÿ‘ ๐Ÿ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐Ÿ’ ๐Ÿ‘๐Ÿ๐Ÿ’ .69. If ๐’๐Ÿ and ๐’๐Ÿ are two numbers, such thatthe sum of all the divisors of ๐’๐Ÿ other than๐’๐Ÿ is equal to sum of all the divisors of ๐’๐Ÿother than ๐’๐Ÿ , then the pair (๐’๐Ÿ , ๐’๐Ÿ ) iscalled an amicable number pair.Square of the sum of these divisors (๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ’ ๐Ÿ‘ ๐Ÿ”)2 ๐Ÿ๐Ÿ–๐Ÿ ๐Ÿ‘๐Ÿ๐Ÿ’.76. Find all positive integers n for which ๐’๐Ÿ ๐Ÿ—๐Ÿ” is a perfect square.Given : ๐’‚ ๐Ÿ‘. ๐Ÿ๐’ ๐Ÿ,77. There are n necklaces such that the firstnecklace contains 5 beads, the secondcontains 7 beads and, in general, the ithnecklace contains i beads more than thenumber of beads in (๐’Š ๐Ÿ)th necklace.Find the total number of beads in all the nnecklaces.๐’ƒ ๐Ÿ‘. ๐Ÿ๐’ ๐Ÿ ๐ŸAnd ๐’„ ๐Ÿ—. ๐Ÿ๐Ÿ๐’ ๐Ÿ ๐ŸWhere a, b and c are all prime numbers, thenshow that (๐Ÿ๐’ ๐’‚๐’ƒ, ๐Ÿ๐’ ๐’„) is an amicable pair.70. Show that s(N) ๐Ÿ’๐‘ต ๐’˜๐’‰๐’†๐’ ๐‘ต 30240.78. Let a sequence ๐’™๐Ÿ , ๐’™๐Ÿ , ๐’™๐Ÿ‘ , , of complexnumbers be defined by ๐’™๐Ÿ ๐ŸŽ, ๐’™๐’ ๐Ÿ ๐’™๐’ ๐Ÿ ๐’Š for n 1 where ๐’Š๐Ÿ ๐Ÿ. Find thedistance of ๐’™๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ ๐’‡๐’“๐’๐’Ž ๐’™๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ• in thecomplex plane.71. Show that f(๐‘ท๐Ÿ ๐’‚๐Ÿ . ๐‘ท๐Ÿ ๐’‚๐Ÿ ) ๐’‡(๐‘ท๐Ÿ ๐’‚๐Ÿ ). ๐’‡(๐‘ท๐Ÿ ๐’‚๐Ÿ ), ๐’˜๐’‰๐’†๐’“๐’† ๐‘ท๐Ÿ ๐’‚๐’๐’… ๐‘ท๐Ÿ aredistinct prime.72. Define ๐‘ญ(๐’) ๐’’ ๐’ ๐’•๐Ÿ‘ (๐’…) cube of thenumber of divisors of d, i.e., F(n) is definedas the sum of the cubes of the number ofdivisors of the divisors of n.79. Find all n such than ๐’! has 1998 zeroes atthe end of ๐’!5

Olympiad Mathematics by Tanujit Chakraborty80. Let f be a function from the set of positiveintegers to the set of real numbers {f : N ๐‘น} such that(i)๐’‡(๐Ÿ) ๐Ÿ(ii)๐’‡(๐Ÿ) ๐Ÿ๐’‡(๐Ÿ) ๐Ÿ‘๐’‡(๐Ÿ‘) ๐’๐’‡(๐’) ๐’(๐’ ๐Ÿ)๐’‡(๐’). Findf(1997).81. Suppose f is a function on the positiveintegers, which takes integer values (i.e.๐’‡: ๐‘ต ๐’) with the following properties:(a) ๐’‡(๐Ÿ) ๐Ÿ(b) ๐’‡(๐’Ž. ๐’) ๐’‡(๐’Ž). ๐’‡(๐’)(c) ๐’‡(๐’Ž) ๐‘“(๐’) if m n.this last digit is carried to the beginning ofthe number.87. All the 2 digit numbers from 19 to 93 arewritten consecutively to form the numberN ๐Ÿ๐Ÿ—๐Ÿ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ—๐Ÿ๐Ÿ—๐Ÿ๐Ÿ—๐Ÿ‘. Find thelargest power of 3 that divides N.88. If a, b, x and y are integers greater than 1such that a and b have no common factorsexcept 1 and ๐’™๐’‚ ๐’š๐’ƒ , show that ๐’™ ๐’๐’ƒ ๐’‚๐’๐’… ๐’š ๐’๐’‚ for integers n greater than1.Find f(1983).89. Find all four โ€“ digit numbers having thefollowing properties :82. Show that for๐Ÿ๐’Ž ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ๐’Ž ๐Ÿ๐’‡(๐’Ž) [(๐Ÿ‘ ๐Ÿ ๐Ÿ) (๐Ÿ‘ i.ii.๐Ÿ ๐Ÿ) ๐Ÿ”] both f(m) 1 and 2f(m) 1 areperfect squares for all m ๐ ๐‘ต by showing thatf(m) is an integer.๐Ÿiii.๐’Ž83. Show that ๐’ ๐Ÿ– [(๐Ÿ๐Ÿ• ๐Ÿ๐Ÿ ๐Ÿ) 90. Determine with proof, all the positiveintegers n for whichi.n is not the square of any integerand๐’Ž(๐Ÿ๐Ÿ• ๐Ÿ๐Ÿ ๐Ÿ) ๐Ÿ”] is an integer for all m๐ ๐‘ต and hence, show that both (n 1) and(2n 1) are perfect squares for all m ๐ N.84. A sequence of numbers ๐’‚๐’ , ๐’ 1, 2, isdefined as follows:๐Ÿ๐Ÿ๐’‚๐Ÿ and for each ๐’ ๐Ÿ, ๐’‚๐’ It is a square,Its first two digits are equal to eachother andIts last two digits are equal to eachother.ii.[ ๐’]๐Ÿ‘ ๐’…๐’Š๐’—๐’Š๐’…๐’†๐’” ๐’๐Ÿ .([x] denotes the largest integer that is less thanor equal to x).๐Ÿ๐’ ๐Ÿ‘)( ๐Ÿ๐’ ) ๐’‚๐’ ๐Ÿ.Prove that ๐’๐’Œ ๐Ÿ ๐’‚๐’Œ 1 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘› 1.91. For a positive integer n, define A(n) to be(๐Ÿ๐’)!/(๐’!)๐Ÿ . Determine the sets of positiveintegers n for which:85. Let T be the set of all triplets (a, b, c) ofintegers such that 1 ๐’‚ ๐’ƒ ๐’„ ๐Ÿ”. Foreach triplet (a, b, c) in T, take the number๐’‚ ๐’ƒ ๐’„ and add all these numberscorresponding to all the triplets in T. Provethat this sum is divisible by 7.(i) A(n) is an even number; (ii) A(n) is amultiple of 4.92. Given any positive integer n show thatthere are two positive rational numbers aand b, a b, which are not integers and86. Find the least number whose last digit is 7and which becomes 5 times larger when6

Olympiad Mathematics by Tanujit Chakrabortywhich are such that a โ€“b, ๐’‚๐Ÿ ๐’ƒ๐Ÿ , , ๐’‚๐’ ๐’ƒ๐’ are all integers.Geometry93. Suppose ABCD is a cyclic quadrilateral. Thediagonals AC and BD intersect at P. Let Obe the circumcentre of triangle APB and H,the orthocenter of triangle CPD. Show thatO, P, H are collinear.94. In a triangle ABC, AB AC. A circle isdrawn touching the circumcircle of ABCinternally and also, touching the sides ABand AC at P and Q respectively. Prove thatthe midpoint of PQ is the in centre oftriangle ABC.95. ABC is a right angled triangle with ๐‘ช ๐Ÿ—๐ŸŽ . The centre and the radius of theinscribed circle is I and r. Show that ๐‘จ๐‘ฐ ๐Ÿ97. If ๐’– ๐’„๐’๐’• ๐Ÿ๐Ÿ ๐Ÿ‘๐ŸŽโ€ฒ , ๐’— ๐’”๐’Š๐’ ๐Ÿ๐Ÿ ๐Ÿ‘๐ŸŽโ€ฒ, provethat u satisfies a quadratic and v satisfies aquartic (biquadratic or 4th degree)equation with integral coefficients which isa monic polynomial equation (i.e., theleading coefficient ๐Ÿ).98. Let AB and CD be two perpendicular chordsof a circle with centre O and radius r and letX, Y, Z, W denote in cyclical order the fourparts into which the disc is thus divided.Find the maximum and minimum of the๐‘ฉ๐‘ฐ ๐Ÿ ๐‘จ๐‘ฉ ๐’“.quantity๐Ÿ๐‘จ๐‘จ๐Ÿ๐Ÿ100. Let A, B, C, D be four given points on aline l. Construct a square such that two ofits parallel sides or their extensions gothrough A and B respectively and the othertwo sides (or their extensions) go throughC and D respectively.๐Ÿ ๐‘ฉ๐‘ฉ ๐‘ช๐‘ช๐Ÿwhere E(u) denotes thearea of u.99. Two given circles intersect in two points Pand Q. Show how to construct a segmentAB passing through P and terminating onthe two circles such that AP. PB is amaximum.96. Let ๐‘ช๐Ÿ be any point on side AB of a triangleABC. Draw C1C meeting AB at C1. The linesthrough A and B parallel to CC1 meet BCproduced and AC produced at A1 and B1respectively. Prove that๐‘ฌ(๐‘ฟ) ๐‘ฌ(๐’),๐‘ฌ(๐’€) ๐‘ฌ(๐‘พ)๐Ÿ101. The diagonals AC, BD of thequadrilateral ABCD intersect at the interiorpoint O. The areas of the triangles AOB andCOD are s1 and s2 respectively and the area7

Olympiad Mathematics by Tanujit Chakrabortyof the quadrilateral is s. Prove that ๐’”๐Ÿ is any point on the major segment, show ๐’”๐Ÿ ๐’”. When does equality hold?that ๐‘จ๐‘ช๐Ÿ ๐‘ฉ๐‘ช๐Ÿ ๐Ÿ(๐Ÿ ๐Ÿ‘).102. Let M be the midpoint of the side AB of ๐‘จ๐‘ฉ๐‘ช. Let P be a point on AB between Aand M and let MD be drawn parallel to PC,intersecting BC at D. If the ratio of the areaof ๐‘ฉ๐‘ท๐‘ซ to that of ๐‘จ๐‘ฉ๐‘ช is denoted by r,then examine which of the following istrue:(a)๐Ÿ๐Ÿ108. From a point E on the median AD of ๐‘จ๐‘ฉ๐‘ช, the perpendicular EF is dropped tothe side BC. From a point M on EF,perpendiculars MN and MP are drawn tothe sides AC and AB respectively. If N, E, Pare collinear, show that M lies on theinternal bisector of ๐‘ฉ๐‘จ๐‘ช.109. AD is the internal bisector of ๐‘จ ๐’Š๐’ ๐‘จ๐‘ฉ๐‘ช. Show that the line through Ddrawn parallel to the tangent to thecircumcircle at A touches the inscribedcircle. ๐‘Ÿ 1 depending upon theposition of P.๐Ÿ(b) ๐’“ ๐Ÿ(c)๐Ÿ๐Ÿ‘๐Ÿ ๐‘Ÿ ๐Ÿ‘ depending upon theposition of P.103. ABCDE is a convex pentagon inscribedin a circle of radius 1 units with AE asdiameter. If AB ๐’‚, ๐‘ฉ๐‘ช ๐’ƒ, CD ๐’„, ๐‘ซ๐‘ฌ ๐’…, prove that ๐’‚๐Ÿ ๐’ƒ๐Ÿ ๐’„๐Ÿ ๐’‚๐’ƒ๐’„ ๐’ƒ๐’„๐’… 4.110. Given two concentric circles of radii Rand r. From a point P on the smaller circle,a straight line is drawn to intersect thelarger circle at B and C. The perpendicularto BC at P intersects the smaller circle at A.Show that104. A rhombus has half the area of thesquare with the same side length. Find theratio of the longer diagonal to that of theshorter one.105. A ball of diameter 13 cm is floating sothat the top of the ball is 4cm above thesmooth surface of the pond. What is thecircumference in centimeters of the circleformed by the contact of the water surfacewith the ball.๐‘ท๐‘จ๐Ÿ ๐‘ท๐‘ฉ๐Ÿ ๐‘ท๐‘ช๐Ÿ ๐Ÿ(๐‘น๐Ÿ ๐’“๐Ÿ ).111.Find x, y, z ๐‘น satisfying๐Ÿ“ ๐’š๐Ÿ ๐Ÿ๐’š ๐Ÿ” ๐’›๐Ÿ ๐Ÿand๐’›๐Ÿ’ ๐’™๐Ÿ ๐Ÿ๐’™ xyz ๐’™ ๐’š ๐’›.112. If ๐’‚๐ŸŽ ๐’‚๐Ÿ ๐’„๐’๐’”๐’™ ๐’‚๐Ÿ ๐’„๐’๐’” ๐Ÿ๐’™ ๐’‚๐Ÿ‘ ๐’„๐’๐’” ๐Ÿ‘๐’™ ๐ŸŽ for all ๐’™ ๐‘น, show that๐’‚๐ŸŽ ๐’‚๐Ÿ ๐’‚๐Ÿ ๐’‚๐Ÿ‘ ๐ŸŽ.106. OPQ is a quadrant of a circle andsemicircles are drawn on OP and OQ. Showthat the shaded areas a and b are equal.113. If any straight line is drawn cuttingthree concurrent lines OA, OB, OP at A, B,P, then107. Given a circle of radius 1 unit and AB isa chord of the circle with length 1 unit. If C๐‘จ๐‘ท ๐‘จ๐‘ถ ๐’”๐’Š๐’ ๐‘จ๐‘ถ๐‘ท ๐‘ท๐‘ฉ ๐‘ฉ๐‘ถ ๐’”๐’Š๐’ ๐‘ท๐‘ถ๐‘ฉ8

Olympiad Mathematics by Tanujit Chakraborty114. ABC is a triangle that is inscribed in acircle. The angle bisectors of A, B, C meetthe circle at D, E, F respectively. Show thatAD is perpendicular to EF.121. Two circles C1 and C2 intersect at twodistinct points P and Q in a plane. Let a linepassing through P meet the circles C1 andC2 in A and B respectively. Let Y be themidpoint of AB and QY meet the circles C1and C2 in X and Z respectively. Show that Yis also the midpoint of XZ.115. ABC is a triangle. The bisectors of ๐‘ฉ ๐’‚๐’๐’… ๐‘ช meet AC and AB at D and Erespectively and BD and CE intersect at O.If OD OE, prove that either ๐‘ฉ๐‘จ๐‘ช ๐Ÿ”๐ŸŽ or the triangle is isosceles.122. Given a triangle ABC in a plane ๐šบ findthe set all points P lying in the plane ๐šบ suchthat the circumcircles of triangles ABP, BCPand CAP are congruent.116. Show that the radian measure of anacute angle is less than harmonic mean ofits sine and its tangent.123. Suppose ABCD is a convexquadrilateral and P.Q are the midpoints ofCD, AB. Let AP, DQ meet in X and BP, CQmeet in Y. Prove that [ADX] [BCY] [PXQY]. How does the conclusion alter ifABCD is not a convex quadrilateral?117. Show how to construct a chord BPC ina given angle A, through a given point P,๐Ÿ๐Ÿsuch that ๐‘ฉ๐‘ท ๐‘ท๐‘ช is maximum, where P isin the interior of ๐‘จ.124. A triangle ABC has in centre I. Points X,Y are located on the line segments AB, ACrespectively so that BX. AB ๐‘ฐ๐‘ฉ๐Ÿ andCY.AC ๐‘ฐ๐‘ช๐Ÿ . Given that X, I, Y arecollinear, find the possible values of themeasure of angle A.118. If a line AQ of an equilateral triangleABC, is extended to meet the circumcircleat P, then๐Ÿ๐Ÿ ๐‘ท๐‘ฉ๐‘ท๐‘ช ๐Ÿ๐‘ท๐‘ธwhere Q is thepoint where AQ meets BC.119. Let ABC be a triangle of area andAโ€™Bโ€™Cโ€™ be the triangle formed by thealtitudes ๐’‰๐’‚ , ๐’‰๐’ƒ , ๐’‰๐’„ ๐’๐’‡ ๐‘จ๐‘ฉ๐‘ช as its sideswith area โ€ฒ and Aโ€™โ€™Bโ€™โ€™Cโ€™โ€™ be the triangleformed by the altitudes of Aโ€™Bโ€™Cโ€™ as itssides with area โ€™โ€™. If โ€ฒ ๐Ÿ‘๐ŸŽ ๐’‚๐’๐’… โ€ฒโ€ฒ ๐Ÿ๐ŸŽ, find D.125. Suppose A1A2A3 An is an n sidedregular polygon such that๐Ÿ๐Ÿ๐Ÿ ๐‘จ๐Ÿ ๐‘จ๐Ÿ ๐‘จ๐Ÿ ๐‘จ ๐Ÿ‘ ๐‘จ๐Ÿ ๐‘จ๐Ÿ’Determine n, the number of sides ofthe polygon.120. Let ABC be a right angled triangle rightangled at A and S be its circumcircle. Let ๐‘บ๐Ÿbe the circle touching AB, AC and circle Sinternally. Let ๐‘บ๐Ÿ be the circle touching AB,AC and S externally. If ๐’“๐Ÿ ๐’‚๐’๐’… ๐’“๐Ÿ are theradii of circles ๐‘บ๐Ÿ and ๐‘บ๐Ÿ respectively,show that ๐’“๐Ÿ . ๐’“๐Ÿ ๐Ÿ’ ๐’‚๐’“๐’†๐’‚ ( ๐‘จ๐‘ฉ๐‘ช).126. Let ABC be a triangle with ๐‘จ ๐Ÿ—๐ŸŽ ,and S be its circumcircle. Let S1 be thecircle touching the rays AB, AC and thecircle S internally. Further let S2 be thecircle touching the rays AB, AC and thecircle S externally. If ๐’“๐Ÿ , ๐’“๐Ÿ be the radii of9

Olympiad Mathematics by Tanujit Chakrabortythe circles S1 and S2 respectively, show that๐’“๐Ÿ ๐’“๐Ÿ ๐Ÿ’[๐‘จ๐‘ฉ๐‘ช].Also show that no three of the conditionssuffice to identify S uniquely.133. Let S be the set of pensioners, E the setof those that lost an eye, H those that lostan ear, A those that lost an arm and Lthose that lost a leg. Given that n(E) ๐Ÿ•๐ŸŽ%, n (H) 75%, ๐’(๐‘จ) ๐Ÿ–๐ŸŽ% ๐’‚๐’๐’… ๐’(๐‘ณ) ๐Ÿ–๐Ÿ“%, find whatpercentage at least must have lost all thefour.134. Let set S {๐’‚๐Ÿ , ๐’‚๐Ÿ , ๐’‚๐Ÿ‘ , , ๐’‚๐Ÿ๐Ÿ } whereall twelve elements are distinct, we wantto form sets each of which contains one ormore of the elements of set S (includingthe possibility of using all the elements ofS). The only restriction is that the subscriptof each element in a specific set must bean integral multiple of the smallestsubscript in the set. For example{๐’‚๐Ÿ , ๐’‚๐Ÿ” , ๐’‚๐Ÿ– } is one acceptable set, as is{๐’‚๐Ÿ” }. How many such sets can be formed?Can you generalize the result?127. Suppose ABCD is a rectangle and P, Q,R, S are points on the sides AB, BC, CD, DArespectively. Show that PQ QR RS SP ๐Ÿ AC.128.Let ABC be a triangle and ๐’‰๐’‚ be thealtitude through A. Prove that(๐’ƒ ๐’„)๐Ÿ ๐’‚๐Ÿ ๐Ÿ’๐’‰๐’‚ ๐Ÿ(As usual a, b, c denote the sides BC,CA, AB respectively).129. Let P be an interior point of a triangleABC and let BP and CP meet AC and AB in Eand F respectively. If [BPF] ๐Ÿ’, [๐‘ฉ๐‘ท๐‘ช] ๐Ÿ– ๐’‚๐’๐’… [๐‘ช๐‘ท๐‘ฌ] ๐Ÿ๐Ÿ‘, find [AFPE]. (Here []denotes the area of a triangle or aquadrilateral as the case may be).130. Suppose ABCD is a cyclic quadrilateralinscribed in a circle of radius one unit.135. Prove that there are ๐Ÿ(๐Ÿ๐’ ๐Ÿ ๐Ÿ) waysof dealing n cards to two persons. (Theplayers may receive unequal numbers ofcards).If AB. BC. CD. DA ๐Ÿ’. Prove that ABCD is asquare.136. Let S be the set of natural numberswhose digits are chosen from {1, 2, 3, 4}such that(a) When no digits are repeated, find n(S)and the sum of all numbers in S.(b) When S1 is the set of upto 4 digitnumbers where digits are repeated.Find S1 and also find the sum of allthe numbers in S1.COMBINATORICS131. Find the number of ways to choose anordered pair (a, b) of numbers from the set(1, 2, , 10) such that a b 5.132. Identify the set S by the followinginformation :(i)๐‘บ {๐Ÿ‘, ๐Ÿ“, ๐Ÿ–, ๐Ÿ๐Ÿ} {๐Ÿ“, ๐Ÿ–}(ii)๐‘บ {๐Ÿ’, ๐Ÿ“, ๐Ÿ๐Ÿ, ๐Ÿ๐Ÿ‘} {๐Ÿ’, ๐Ÿ“, ๐Ÿ•, ๐Ÿ–, ๐Ÿ๐Ÿ, ๐Ÿ๐Ÿ‘}{๐Ÿ–, ๐Ÿ๐Ÿ‘} ๐‘บ(iii)(iv)๐‘บ {๐Ÿ“, ๐Ÿ•, ๐Ÿ–, ๐Ÿ—, ๐Ÿ๐Ÿ, ๐Ÿ๐Ÿ‘}137.Find the number of 6 digit naturalnumbers where each digit appears at leasttwice.10

Olympiad Mathematics by Tanujit Chakraborty144. Let X {1, 2, 3, 99} and n(X) 10.Show that it is possible to choose twodisjoint non empty proper subsets Y, Z ofX such that (๐’š ๐’š ๐’€) (๐’› ๐’› ๐’).138. Let ๐‘ฟ {๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐‘ต} ๐’˜๐’‰๐’†๐’“๐’† ๐’ ๐‘ต.Show that the number of r combinations ofX which contain no consecutive integers isgiven by (๐’ ๐’“ ๐‘ฐ) where 0 ๐’“ ๐’ ๐’“ ๐‘ฐ.๐’“145. Find the number of integer solutions tothe equation๐’™๐Ÿ ๐’™๐Ÿ ๐’™๐Ÿ‘ ๐Ÿ๐Ÿ– ๐’˜๐’‰๐’†๐’“๐’† ๐Ÿ‘ ๐’™๐Ÿ ๐Ÿ—, ๐ŸŽ ๐’™๐Ÿ ๐Ÿ– ๐’‚๐’๐’… ๐Ÿ• ๐’™๐Ÿ‘ ๐Ÿ๐Ÿ•.139. Let S {1, 2, 3, , (n 1), where n 2and let t {(๐’™, ๐’š, ๐’›) ๐’™, ๐’š, ๐’› ๐‘บ, ๐’™ ๐‘ฆ, ๐‘ฆ ๐‘ง}. By counting the members of T in twodifferent ways, prove that146. I have six friends and during a certainvacation, I meet them during severaldinners. I found that I dined with all the sixexactly on one day, with every five of themon 2days, with every four of them on 3days, with every three of them on 4 daysand with every two of them on 5 days.Further every friend was present at 7dinners and every friend was absent at 7dinners. How many dinners did I havealone?๐’๐’ ๐Ÿ๐’ ๐Ÿ ๐’Œ () ๐Ÿ()๐Ÿ๐Ÿ‘๐Ÿ๐’Œ ๐Ÿ140.Find the number of permutations(p1, p2, p3, p4, p5, p6) of (1, 2, 3, 4, 5, 6) suchthat for any k, 1 ๐’Œ ๐Ÿ“ (p1, p2, p3, , pk) doesnot form a permutation of 1, 2, 3, , k, i.e., p1 1, (p1, p2) is not a permutation of (1, 2) (p1,p2, p3) is not a permutation of (1, 2, 3), etc.141. Consider the collection of all threeelement subsets drawn from the set {1, 2,3, 4, , 299, 300}. Determine the numberof subsets for which, the sum of theelements is a multiple of 3.147. Let A denote the subset of the set ๐‘บ {a, a d, , a 2nd} having the property thatno two distinct elements of A add up to2(a nd). Prove that A cannot have morethan (n 1) elements. If in the set S, a 2ndis changed to a (2n 1)d, what is themaximum number of elements in A if inthis case no two elements of A add up to2a (2n 1)d?142. 4n 1 points lie within an equilateraltriangle of side 1 com. Show that it ispossible to choose out of them, at leasttwo, such that the distance between them๐Ÿis ๐Ÿ๐’ cm.148. Show that the number of threeelementic subsets (a, b, c) of {1, 2, 3, , 63}with (a b c) 95 is less than the numberof those with (a b c) 95.143. Let A be any set of 19 distinct integerschosen from the Arithmetic Progression 1,4, 7, , 100. Prove that there must be twodistinct integers in A, whose sum is 104.149. Given any five distinct real numbers,prove that there are two of them, say xand y, such that11

Olympiad Mathematics by Tanujit ChakrabortyShow that this partitioning can be carried outin a unique manner and determine the subsetsto which 1987, 1988, 1989, 1997, 1998 belong.0 (x โ€“ y)/(1 xy).150. Show that using ๐Ÿ ๐Ÿ‘๐ŸŽ , ๐Ÿ‘๐Ÿ , ๐Ÿ‘๐Ÿ , , ๐Ÿ‘๐’,weight, i.e., (n 1) weight each of which isof the form ๐Ÿ‘๐’Š , ๐ŸŽ ๐’Š ๐’, one can weightall the objects weighing from 1 unit to154. Suppose A1, A2, ., A6 are six sets eachwith four elements and B1, B2, , Bn are nsets each two elements such that๐‘จ๐Ÿ ๐‘จ๐Ÿ . ๐‘จ๐Ÿ” ๐‘ฉ ๐Ÿ ๐‘ฉ๐Ÿ ๐‘ฉ๐’ ๐‘บ (๐’”๐’‚๐’š)Given that each element of S belongsto exactly four of the Aiโ€™s and exactlythree of the Bjโ€™ s, find n.๐Ÿ ๐Ÿ‘ ๐Ÿ‘๐Ÿ ๐Ÿ‘๐’๐Ÿ‘๐’ ๐Ÿ ๐Ÿ ๐’–๐’๐’Š๐’•๐’”.๐Ÿ151. To cross a river there is a boat whichcan hold just two persons. n newly weddedcouples want to cross the river to reachthe far side of the river. But husbands andwives have no mutual confidence in theother. So, none of them want to leave his(her) wife (husband) along with other man(woman). But they do not mind leavingthem alone or with at least one morecouple. How many times they have to rowfront and back so that all the couples reachthe famside of the river?152. A difficult mathematical competitionconsisted of a Part I and a part II with acombined total of 28 problems. Eachcontestant solved 7 problems altogether.For each pair of problems there wereexactly two contestants who solved bothof them. Prove that there was a contestantwho in Part I solved either no problem orat least 4 problems.153. It is proposed to partition the set ofpositive integers into two disjoint subsetsA and B. Subject to the followingconditions:(i)I is in A.(ii)No two distinct members of A havea sum of the form ๐Ÿ๐’Œ ๐Ÿ(๐’Œ ๐ŸŽ, ๐Ÿ, ๐Ÿ, ).(iii)No two distinct members of B havea sum of the form ๐Ÿ๐’Œ ๐Ÿ(๐’Œ ๐ŸŽ, ๐Ÿ, ๐Ÿ, ).155. Two boxes contain between 65 balls ofseveral different sizes. Each ball is white,black, red, or yellow. If you take any fiveballs of the same colour, at least two ofthem will always be of the same size(radius). Prove that there are at least threeballs which lie in the same box, have thesame colour and are of the same size.156. Let A denote a subset of the set {1, 11,21, 31, , 541, 551} having the propertythat no two elements of A add up to 552.Prove that A cannot have more than 28elements.157. Find the number of permutations,(๐‘ท๐Ÿ , ๐‘ท๐Ÿ , , ๐‘ท๐Ÿ” ) of (1, 2, , 6) such that forany k, ๐Ÿ ๐’Œ ๐Ÿ“, (๐‘ท๐Ÿ , ๐‘ท๐Ÿ , , ๐‘ท๐’Œ ) does notform a permutation of 1, 2, , k. [That is๐‘ท๐Ÿ ๐Ÿ; (๐‘ท๐Ÿ , ๐‘ท๐Ÿ ) is not a permutation of 1,2, 3, etc.]158. Let A be a subset of {1, 2, 3, .2n 1,2n} containing n 1 elements. Show thata. Some two elements of A are relativelyprime:b. Some two elements of A have theproperty that one divides the other.12

Olympiad Mathematics by Tanujit Chakraborty165. For any natural number n, (n 3), letf(n) denote the number of non congruentinteger sided triangle with perimeter n(e.g., f(3) ๐Ÿ, ๐’‡(๐Ÿ’) ๐ŸŽ, ๐’‡(๐Ÿ•) ๐Ÿ). Showthat159. Let A denote the set of all numbersbetween 1 and 700 which are divisible by 3and let B denote the set of all numbersbetween 1 and 300 which are divisible by7. Find the number of all ordered pairs (a,b) such that ๐’‚ ๐‘จ, ๐’ƒ ๐‘ฉ, ๐’‚ ๐’ƒ and a bis even.(a) f(1999) f(1996);(b) f(2000) f(1997)160. Find the number of unordered pairs {A,B} (i.e., the pairs {A, B} and {B, A} areconsidered to be the same) of subsets ofan n element set X which satisfy theconditions :(a) ๐‘จ ๐‘ฉ;(b) ๐‘จ ๐‘ฉ ๐‘ฟ.161. Find the number of quadraticpolynomials, ax2 bx c, which satisfy thefollowing conditions :(a) a, b, c are distinct;(b) ๐’‚, ๐’ƒ, ๐’„ {๐Ÿ, ๐Ÿ, ๐Ÿ‘, , ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ—} and(c) ๐’™ ๐Ÿ divides ax2 bx c.162. Let X be a set containing n elements.Find the number of all ordered triplets (A,B, C) of subsets of X such that A is a subsetof B and B is a proper subset of C.163. Find the number of ๐Ÿ’ ๐Ÿ’ arrays whoseentries are from the set {0, 1, 2, 3} andwhich are such that the sum of thenumbers in each of the four rows and ineach of the four columns is divisible by 4.(An ๐’Ž ๐’ array is an arrangement of mnnumbers in m rows and n columns).164. There is a ๐Ÿ๐’ ๐Ÿ๐’ array (matrix)consisting of 0โ€™s and Iโ€™s there are exactly3n zeroes. Show that it is possible toremove all the zeroes by deleting some nrows and some n columns.13

Olympiad Mathematics by Tanujit ChakrabortyIn SOLUTION SETthere are n(n 1) fractions.distinct. PairingAlgebra๐‘Ž๐‘›๐‘‘๐‘Ž๐‘—๐‘Ž๐‘–๐‘Žform ๐‘–๐‘Ž๐‘—๐‘Ž๐‘–๐‘Ž๐‘—there areare all๐‘›(๐‘› 1)2pairs๐‘Ž ๐‘—.๐‘Ž๐‘–๐‘Ž๐‘ŽBut each ๐‘Ž ๐‘– ๐‘Ž๐‘— 2 ๐‘Ž2 ๐‘ 2 2๐‘Ž๐‘๐‘—๐‘๐‘–๐‘› ๐‘ ๐‘Ž 2 ๐‘– 1๐‘Ž1 ๐‘Ž2 ๐‘Ž3 ๐‘Ž๐‘› 1 .(1)๐‘›Dividing equation (1) by a1, a2, a3, , ansuccessively and adding, we get1 ๐‘Ž๐‘–๐‘Ž๐‘—of fractions of the1. (๐‘Ž ๐‘)2 0๐‘Ž๐‘Ž๐‘–๐‘Ž๐‘— ๐‘– 1๐‘Ž2 ๐‘Ž3๐‘Ž๐‘›1 ๐‘Ž1 ๐‘Ž1๐‘Ž1 ๐‘Ž11equal to ๐‘›.Aliter : By A.M. โ€“G.M. inequality ๐‘Ž๐‘– (๐‘Ž1 ๐‘Ž๐‘› )1/๐‘›๐‘› 111 1/๐‘›๐‘Ž๐‘– ( )๐‘›๐‘Ž1๐‘Ž๐‘› ๐‘Ž1 ๐‘Ž2๐‘Ž๐‘Ÿ 1๐‘Ž๐‘Ÿ 1๐‘Ž๐‘› 1 ๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘Ž๐‘Ÿ๐‘Ž๐‘Ÿ๐‘Ž๐‘Ÿ1 ๐‘Ž๐‘ŸSince both the sides of the inequalities arepositive, we have 1 ๐‘Ž๐‘– ๐‘Ž๐‘–. 1๐‘›๐‘› ๐‘Ž1 ๐‘Ž2 ๐‘Ž3๐‘Ž๐‘› 1 1 1/๐‘Ž๐‘›๐‘Ž๐‘› ๐‘Ž๐‘› ๐‘Ž๐‘›๐‘Ž๐‘›1Since ๐‘Ž๐‘– 1, we get ๐‘Ž ๐‘›2.๐‘–๐‘ŽAdding (1 1 n terms) ๐‘Ž ๐‘– ; ๐‘– ๐‘—, ๐‘–, ๐‘— 2. By A.M. โ€“G.M. inequality,๐‘—1, 2, 3, ๐‘› ๐‘– 11 ๐‘› ๐‘›2 ๐‘› ๐‘›2๐‘Ž๐‘–Equality holds when all ai are equal, i.e., each is๐‘Ž1๐‘Ž3๐‘Ž๐‘›1 1 ๐‘Ž2๐‘Ž2๐‘Ž2 ๐‘Ž2๐‘›1๐‘›(๐‘› 1) ๐‘› 2๐‘Ž๐‘–21๐‘Ž๐‘– ๐‘Ž1 ๐‘Ž2 ๐‘Ž1 ๐‘Ž22 ๐‘Ž1 ๐‘Ž3 ๐‘Ž1 ๐‘Ž32 14

Olympiad Mathematics by Tanujit Chakraborty ๐‘Ž๐‘› 1 ๐‘Ž๐‘› ๐‘Ž๐‘› 1 ๐‘Ž๐‘›24. Here x 0 and ๐‘ฅ 1.Let ๐‘™๐‘œ๐‘”2 ๐‘ฅ ๐‘ ๐‘Ž๐‘  ๐‘ฅ 1, ๐‘ 0.Where ๐‘– ๐‘—, ๐‘–, ๐‘— 1, 2, ๐‘›1There are๐‘›(๐‘› 1)2The given inequality becomes ๐‘ ๐‘ 2 cos ๐‘ฆ inequalities and, on the right0hand side, each ๐‘Ž๐‘– occurs (n 1) times.๐‘–. ๐‘’. ,Adding these inequaliti

Olympiad Mathematics by Tanujit Chakraborty 2 16. If P(x) is a polynomial of degree n such that ( ) for x รญ, รฎ, รฏ, .n รญ, find P(x 2). 17. What is the greatest integer, n for which there exists a simultaneous solution x to the inequalities k 1, 1,